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Abstract 

We present numerical simulations of electron confinement in gated AlGaAs/GaAs quantum dot structures. 
The confining quantum dot potentials are obtained from solutions of the axisymmetric Poisson equation. 
Our model takes into account the effect of surface states by viewing the exposed surface as the interface 
between the semiconductor and the dielectric. We investigate the confining potentials and the dot occupa
tion as a function of different physical models for surface states at the exposed semiconductor surface. 

I. INTRODUCTION 

In recent years, fabrication techniques have made possible confinement of a two-dimensional electron 
gas into wires or dots where quantum effects are significant. Typically, such device structures are defined 
by metallic gates. In order to model electronic confinement in these structures, one has to solve the Poisson 
and the Schrodinger equations. For solving the Poisson equation, one needs to specify boundary conditions 
for the potential and/or flux at the exposed semiconductor surface. This is a crucial problem, especially in 
quantum devices where the confined electrons reside close to the surface. In previous work [1], we have 
shown that different choices for the boundary conditions at the exposed surface result in noticeable differ
ences for the confining potentials. Highly accurate models of the potential or dielectric flux variation on 
the exposed semiconductor surface will be needed to realize recently proposed computing architectures for 
quantum devices, so called Quantum Cellular Automata, which consist of cells of coupled quantum dots in 
the few electron regime [2]. 

In our formulation [1], we view as the natural problem domain both the semiconductor and the dielec
tric, as schematically shown in Fig. 1(a). Thus the usual Dirichlet or Neumann boundary conditions at the 
exposed semiconductor surface are replaced by more physical matching conditions at the interface 
between the semiconductor and the dielectric. We assume that the potential is continuous across this inter
face and that the jump in the normal dielectric flux density is equal to the surface/interface charge density, 
Qint, which is determined by microscopic models for surface/interface states. We apply our coupled finite-
element/boundary-element (FBEM) algorithm to quantum dot structures with axisymmetry. The numerical 
formulation of the problem is developed in Sec. II and numerical results are presented in Sec. m . 

II. PROBLEM FORMULATION 

1. Problem Statement 

A model quantum dot structure with axisymmetry is shown in Fig. 1. In the semiconductor domain, a 
quantum dot is realized at the AlGaAs/GaAs heterojunction and is defined by applying a sufficiently nega-
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Figure 1: The model quantum dot heterostructure. Fig. 1(a) shows the whole problem domain with axial symmetry 
which consists of both the semiconductor ( £2j and £22 ) and the dielectric ( Q.d ) regions. Fig. 1(b) indicates the two 
dimensional generating areas and boundaries with typical dimensions. Fig. 1(c) shows the FBEM mesh, which is dense 
inside the semiconductor region and only consists of the discretized boundary surrounding the dielectric region. 

tive gate voltage VG to the metal gate on the top surface, which contains a circular opening thus exposing 
the semiconductor surface. For axial symmetry, Poisson's equation can be written in cylindrical coordi
nates (r,Q,z) as, 

1 3 du(r,z) d du(r,z) 
-rTrire—dF-)+dz{£-dz-)=-f[u(r>z)h (1) 

where u = (Ec (<()) - EF) /kT is a reduced variable which measures the separation between the con
duction band edge and the Fermi level in units of the thermal energy kT, f = ep/kT is the charge den
sity term in the semiconductor, e is the dielectric constant, and m* is the effective mass. The generating 
domains and boundaries are shown in Fig. 1(b). 

Equation (1) is a boundary value problem. We solve it by our FBEM algorithm [1], which is a com
bined finite element method (FEM) for the semiconductor domain and a boundary element method (BEM) 
for the dielectric region. For the semiconductor domain Q.s, with £ls = Q, u Cl2, the standard FEM dis
cretization of equation (1) results in the following non-linear system of equations, 

KUUO + KUUBA = Pf> 

KT
nu

s
0 + K22uBA=Ps

BA, (2) 

where uBA and PBA contain the potentials and nodal forces at the nodes on the interface dQBA between the 
semiconductor and the dielectric, whereas u0 and Ps

f contain the potentials and nodal forces at all other 
nodes inside the semiconductor domain, and K is the stiffness matrix. 

The dielectric domain, Q.d, is a charge free region. The governing equation is Laplace's equation. 
Since the fundamental solution of Laplace's equation is known, a boundary integral equation technique 
can be employed. With the known three dimensional fundamental solution of Laplace's equation in cylin
drical coordinates and its associated dielectric flux density [3], the boundary contour dQ.d can be calcu
lated explicitly in terms of complete elliptic integral of the first and second kind, K{m) and E(m), 
respectively. The resultant system of equations can be expressed as, 

Suu
d
0 + Snu

d
BA = Pd

0, 

S2xu
d
0 + S12u

d
BA = Pd

BA, (3) 
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where S is the equivalent stiffness matrix, and P^ is the equivalent nodal force vector. 
The matching conditions at the exposed surface [1] are given in discretized form by, 

»BA = »BA = "BA and KA + "BA - TfQint* (4) 

where Qint = Qint (uBA) is the nodal charge density on the exposed semiconductor surface. A global sys
tem of equations is formed by coupling the semiconductor, equation (2), to the dielectric, equation (3), 
while enforcing the matching conditions (4), 

S„ 512 0 0 
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(5) 

Solution of this set yields the potential distribution in the semiconductor and dielectric domains, including 
the interface dQBA, and the nodal flux on dQBA. 

2. Interface Charge Density on the Exposed Semiconductor Surface 

In order to solve the above problem, the surface charge density, Qin[, must be given to specify the 
matching condition (4). It is known that surface states lying within the energy band gap play a dominant 
role in the surface charge Qint on exposed semiconductor surfaces [4-6]. 

In this model, the characters of the surface states are assumed to be acceptor-, DS
A, and donor-,DS

D, 
like. Typical energy distributions of surface states are shown in Fig. 2 [4,5]. The semiconductor surface 
charge density, as a function of surface potential uBA, is given by Fermi-Dirac statistics with an appropriate 
quasi-Fermi level for cases of applied bias, 

QI*MBA) = ~e] 
D\ 

\+exp[(E-E'F)/kT] 
•dE + e 

Ds
Dexp[(E-Es

F)/kT] 
I . dE, 

i\+exp[{E-Es
F)/kT\ 

(6) 

The strong non-linearity of the surface charge as 
a function of the potential may cause numerical con
vergence problems, particularly for low tempera
tures. We implemented a modified Bank-Rose 
damping scheme [7] to stabilize the convergence by 
adaptive underrelaxation and to accelerate the con
vergence speed of Newton's method. The combina
tion of our coupled finite-element/boundary-
element algorithm and the adaptive damping 
scheme performs quite satisfactorily in our numeri
cal examples. 

III. NUMERICAL RESULTS 

Figure 2: Typical energy distributions of interface states 
across the semiconductor bandgap; (a) uniform, and (b) 
localized distributions. 

An example heterostructure is shown in Fig. 1 with its relevant physical dimensions indicated. In the 
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semiconductor domain, a quantum dot is realized at the AlGaAs/GaAs heterointerface by applying a suffi
ciently negative gate voltage VG to the patterned metal gate on the top surface. The n-type doping density 
is assumed to be 10i8cm~3 in the AlGaAs layer and 101 cm in the GaAs substrate. We assume both uni
form and gaussian localized energy distributions of surface states across the semiconductor bandgap, as 
shown in Fig. 2. The characters of the surface states are assumed to be acceptor-, DS

A, and donor-,D*D, 
like. A semi-classical Thomas-Fermi charge model is assumed in the semiconductor domain. 
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Figure 3: Surface potential <|> on the surface of AlGaAs 
as a function of the surface density of states for both uni
form and gaussian localized energy distributions. Here, 
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*A = DD is assumed. 

Figure 4: Comparison of the number of confined electrons 
as a function of gate bias for the three types of boundary 
conditions on the exposed semiconductor surface. The inset 
shows surface potential profiles on the semiconductor sur
face for -0.8 Vgate bias. 

As shown in Fig. 3, the semiconductor surface potential, §s, varies with the surface density of states 
for low defect densities on the surface. For higher surface density of states, however, the surface poten
t ial^ saturates, and the surface Fermi level is then pinned at or near to the energetic position of the neutral 
level, EQ, shown in Fig. 2. This pinning behavior is observed for both uniform and localized energy distri
butions of surface states. 

Figure 4 presents a comparison of the number of confined electrons as a function of gate bias for dif
ferent boundary conditions at the exposed semiconductor surface, namely the more conventional Dirichlet 
and Neumann boundary conditions, and our FBEM matching technique. The parameters and dimensions 
of the quantum dot structure are the same as those given in Fig. 1. We see that the different formulations 
produce significantly different results. Specifically, the Dirichlet boundary condition produces a signifi
cantly higher number of electrons than the FBEM algorithm, and the Neumann boundary condition pro
duces a much lower quantum dot occupation. 
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