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Abst rac t 

The confined acoustic phonons in free-standing quantum wells are considered. Their spectrum may deter
mined from the dispersion equations. We have developed a special stable algorithm to obtain numerical 
solutions of these equations. We have calculated the acoustic phonon density of states in a free-standing 
quantum well. The density of states is , on the average, a quadratic function of energy, however it has 
singularities corresponding to the extrema in the dispersion relations. 

I. INTRODUCTION 

In low dimensional microstructures acoustic phonon states may undergo significant modifica
tions due to the quantization in one, two, or three directions. Acoustic phonon confinement will 
strongly affect the electron and photon interactions with acoustic phonons resulting in peculiari
ties of electron transport properties and light scattering. Therefore it is necessary to develop an 
adequate model of acoustic phonon states in low dimensional structures and their interactions with 
electrons and photons. 

In this paper we consider confined acoustic modes in a thin solid slab of isotropic material. 
We have calculated the confined phonon spectrum and the corresponding density of states (DOS). 
The equation governing the elastic vibrations in our system is the Navier equation for a relative 
displacement vector and it is supplemented by appropriate boundary conditions which are the 
conditions of free (unstressed) surfaces [1, 2, 3]. We have transformed the problem at hand to an 
eigenvalue equation with a Hermitian matrix differential operator. The solutions of this eigenvalue 
problem are three different types of modes with different symmetries: shear waves, dilatational 
waves and flexural waves. Although the general form of the solution may be obtained analytically, it 
includes several parameters (phonon quantum numbers) which should be determined by numerically 
solving the system of nonlinear dispersion equations. These phonon quantum numbers are complex 
valued functions of the in-plane phonon wave vector and they may approach each other so closely 
for some values of the in-plane wave vector, that the numerical solution of the dispersion equations 
leaps from one branch to another. We have developed a special stable algorithm to obtain these 
solutions. 

II. CONFINED ACOUSTIC P H O N O N SPECTRUM 

Shear waves have the simplest quantization rules. A vector of relative displacement in shear 
waves has only one nonzero component in the direction perpendicular to both the direction of 
propagation and the direction perpendicular to the slab . The dispersion relation for shear waves 
is 

^n = st sjql + g| , (1) 

where st is the transverse sound velocity in the bulk material, g|| is an in-plane wave vector, 
?n = (-Kn/a),n = 0,1,2,... 
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Dilatational waves and flexural waves have two nonzero components of the vector of relative 
displacement - in the direction of wave propagation and in the perpendicular to the slab direction. 
The pattern of the vector of relative displacement is symmetric in respect to the slab midplane for 
dilatational waves and antisymmetric for flexural waves. The dispersion relations for dilatational 
waves are given implicitly by the system of equations 

.2 
un «?(«} + £ ) = -?(«!+ 4 ) , (2) 
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where si is the longitudinal sound velocity in the bulk material, parameters ln and tn are determined 
from equations (2) and (3), which have many solutions as denoted by the index n. The dispersion 
relations for flexural waves are given implicitly by eq. (2) and the equation 

tan(*na/2) ~ ( i p | F " W 

The graphs of functions dJn{g\\) obtained by numerical solutions of the system of eqs. (l)-(4) is shown 
in the Fig. la , 2a and 3a for shear waves, dilatational waves and flexural waves, respectively. We 
used elastic constants of GaAs and took the slab width as a = 100A. These graps are plotted for 
the 12 lowest modes. 

I I I . A C O U S T I C P H O N O N D E N S I T Y O F STATES 

The peculiarities of the acoustic phonon spectrum will be markedly pronounced in the their 
density of states (DOS). The DOS of confined phonons is defined by the formula 

n Juin=cemat ldu)-fdqn 
Af = 

(2ir) n Juin=cemat \du)n/dqr 

where A is the area of the slab, and the sum is taken over phonon modes; integral in (5) is taken 
over the curve of constant energy and Af is a function of the energy. 

We have to specify the Brillouin zone to calculate the DOS over a wide range of energy. For 
a model estimation we accepted a simple square Brillouin zone. So we take into account only 
those acoustic phonons in integral (5) which have wavevectors inside the first Brillouin zone. The 
lattice constant is taken equal 5.65A which corresponds to the case of GaAs. The graph of the 
DOS obtained by numerical calculation of the integral of (5) for shear, dilatational and flexural 
phonons is depicted in Fig. lb , 2b, and 3b, respectivelyly. At energies lower than some critical 
energy (corresponding to the edge of the Brillouin zone) the DOS is, on the average, a quadratic 
function of energy. This functional dependence occurs when many phonon branches contribute to 
the DOS and it corresponds to the case of bulk acoustic phonons. It is obscured in Fig. lb , 2b, 
and 3b because the graphs are plotted in the semilogarithmic scale to emphasize the singularities 
of the DOS. These singularities correspond to the extrema in the dispersion relation; formally the 
DOS goes to infinity in such points. In Fig. lb , 2b, and 3b, the DOS is plotted for energies up to 
10 meV. At higher energies the finiteness of the Brillouin zone becomes important and the function 
H saturates in the average. 

The DOS may be determined experimentally from neutron scattering spectra [4, 5] or from 
Brillouin light scattering spectra [6, 7]. It is a very important function characterizing the acoustic 
phonon subsystem and determining peculiarities of phonon interactions with phonons, photons 
and electrons. The singular points of the DOS make the observing conditions for the neutron 
scattering spectra and the Brillouin light scattering spectra more favorable, because the intensity 
of the scattered (reflected) radiation is proportional to the DOS of acoustic phonons. 
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I V . C O N C L U S I O N S 

We have calculated the acoustic phonon modes and their density of states in free-standing 
quantum wells. The density of states has singularities related to the extrema of the acoustic 
phonon dispersion law. In these singular points the DOS formally goes to infinity. It makes the 
observing conditions for light and neutron scattering spectra more favorable. 
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Figure 1. The dependences of the phonon energy, Twn , on the in-plane wavevector, ?(| , (a) and 
the density of states, M , on the phonon energy, U) , (b) for shear phonons in a free-standing 
GaAs quantum well of width 10Q.A. 
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Figure 2. The dependences of the phonon energy, fmn , on the in-plane wavevector, ?|| , (a) 
and the density of states, M , on the phonon energy, hw , (b) for dilatational phonons in a 
free-standing GaAs quantum well of width lOOA. 
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Figure 3. The dependences of the phonon energy, hujn , on the in-plane wavevector, qu , (a) and 
the density of states, JV*, on the phonon energy, ftitj , (b) for flexural phonons in a free-standing 
GaAs quantum well of width lOOA. 

202 




