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Abstract 

Quantum dynamics in Liouville space is used for discussing quantum transport in 
nanoelectronics. A synergism between the two formalisms treated here, namely, the "super" 
Green's function technique and the generalized functional approach is expected to pave the way 
towards more accurate self-consistent numerical calculations of many-body and scattering effects in 
nanolectronics and optoelectronics. 

I. INTRODUCTION 

There is a need for a self-consistent treatment of the nonlinear dynamics of interacting 
quantized fields, e.g., interactions between electrons, ions, and electromagnetic fields. These kinds 
of problems arise in high frequency and/or high power nanoelectronic and optoelectronic devices. 
So far, highly nonequilibrium situations are treated by assuming that all the subsystems other than 
the one of interest are behaving classically and/or in equilibrium condition. In this paper, non-
equilibrium quantum transport is formulated in terms of the Liouville space (L-space) dynamics 
thus treating all the fields quantum mechanically on equal footing. This description also unifies 
classical and quantum statistical dynamics within the L-space dynamical framework [1]. 

The L-space formulation is equivalent to the nonequilibrium Green's function technique [2] 
originated by Schwinger, and Keldysh. However the major advantage of the L-space formalism is 
that it allows for a straightforward application of quantized field theoretical techniques since only 
real-time axis is used. This is in contrast to the double-time contour of the corresponding Hilbert 
space (H-space) formalism which leads to awkward calculational procedure for obtaining the self-
energies of interest. Another major advantage of the L-space formalism is that it provides a 
common starting point for a many-body functional technique, which is rooted in the powerful 
density functional method for calculating many-body effects [3], and the real-time Green's function 
technique based on the O-derivable method [4] for the self-energies. The synergism of these two 
independent techniques is expected to yield a more powerful many-body functional technique for 
numerically simulating bonafide scattering effects. 

For simplicity of presentation in what follows, we focus our discussion on the electron 
system. The corresponding discussion of the ions and electromagnetic fields involve a parallel 
treatment, which will be discussed elsewhere. 

II. QUANTUM DYNAMICS IN LIOUVILLE SPACE 

In Liouville space quantum dynamics, the density-matrix equation formulation of the 
quantum statistical dynamics in H-space becomes a dynamical equation in L-space defined as 
follows: 

a-f-|p»=J?|p», CD 
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where p is the density matrix of the system in H-space, and |p}) is its corresponding supervector 

in L-space. Note that £?\p)) corresponds to the commutator \3f,p\ in H-space. Here the 
St — 

Liouvillean 3?-=-3f -#£, where the "hat" and "tilde" superoperators are defined below. If the set 
{\n)} is an orthonormal basis in H-space in the number representation of the many-body states, 
then the corresponding set {{||'")(n|)H} is an orthonormal basis supervectors in L-space. The 

annihilation and the creation quantum-field operators, y/, y/f in H-space become the "hat"("tilde") 

annihilation, \jf{y) and creation, y* (yff) operators in L-space. They are defined as follows: 

V'\\m)(n\)) = \^\m){n\)), (2) 

wi\rn)(n\)) = (-^rn+1\H(n\¥)), (3) 

|̂hKn|}) = H«K«|}), (4) 
^\m)(n\)) = {-ar"\\m)(n\^)), (5) 

where er is -1 for bosons and +1 for fermions. Due to the doubling of operators in L-space 
corresponding to each operator in H-space, it is more convenient to introduce a two-component 
annihilation and creation operators in L-space. For fermions, we have 

»F = 
( ijr < 

>t 
J 

and y W y r * ijr). (6) 

We also define a unit supervector as |l)) = Xl«)(m| , so that the average of an arbitrary operator A 
m 

can be written as (A) = TrpA = {(l\A\p)). 

III. NON-EQUILIBRIUM GREEN'S FUNCTION IN L- SPACE DYNAMICS 

A "super" or non-equilibrium Green's function in L-space is defined as 

0 = (TVj,(t)%W)/iht (7) 
where T is the usual time ordering operator. In the above expressions, the superoperators are 
written in the "super"-Heisenberg representation, e.g., 

^ W ^ M * ^ ' . ' . ) . (8) 
where %f{t,t0) = T expj —H =^ dt' \. Thus, in the "super"-interaction representation in L-space, we 

can also write Eq. (7) as 

y=(<i|s(«.f)Y7(05^o^(O^.--)|p^>)/((ipK--)|p^)), (9) 
where S(t,t0) is the "super"-S-matrix, obtained by substituting ^ in W(t,t0) by 

<tfp =<%?l
m -J^{1) in the "super"-interaction picture. In Eq. (9), the time axis is from -°° to + « 

and therefore the theory is formally the same as for the "zero-temperature" Green's function. 
Similar equations for the respective Green's functions can be constructed for the ion and 
electromagnetic fields. The full dynamics of ion motion including phonons is described by the 
correlation function of the ion positions. 

We will now develop the transport equations in L-space from the above Green's functions. 
Following the Keldysh approach in H-space, the transport equations for nonequilibrium plasmas 
and radiation has been given by DuBois [5]. A similar transport equation for a system of ions may 
be found in Kwok [6], which is based on the Green function associated with ion positions. In a 
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separate paper [7], we will derive the appropriate transport equations for the coupled system of 
electrons, ions, and electromagnetic fields. 

IV. TRANSPORT EQUATIONS AND SELF-ENERGIES 

In terms of the familiar correlation functions, G) ,and G(, the matrix equation for the 
"super"-Green's function, &, is exactly the same as the following expression 

(Gc -G{\ 
&= . , (10) 

{G} -Gac) 
where Gc and G"c, which can be expressed in terms of G) and G{, are the chronological and 
antichronological Green's functions respectively. Equation (10) is exactly the same as the 
nonequilibrium matrix Green's function expression obtained by other authors [2], using the time 
contour formulation of Schwinger and Keldysh. Integro-differential transport equations for the 
matrix elements of <8 , can be readily obtained from @~x& = 8 and its adjoint. We make use of the 

relations: F(,) = - F Q , Fc =-Fac, to obtain the transport equations for all the matrix elements of 
# 

iti(d/dt + d/dt')Gu = [- h2 V2/2m + <peff + Re Er, Gu ] 

+[z>-<,ReGr] + /{A,E>-<}/2-I{r,C>-<}/2, ^ 

iti(d/dt + d/dt')Gc =[-h2V2/2m + <peff+-Lc,Gc] + Gil)-Il
iGK (12) 

ih(d/dt + d/dt')Gac =[-ft2V2/2m + <pe#-Eac,Gac] + E>G<-G)Z<, (13) 

where Gr and Er represent the retarded Green's function and its associated self-energy, and 

Vtf is the effective potential. It is clear from the last two equations that the term G<E) - Z<G) and its 
counterpart describe effects beyond the finite-lifetime quasi-particle concept, and represent 
bonafide nonequilibrium scattering effects. These are similar to those occurring in the last two 
terms of Eq. (11) for GM. The equation for Gu is exactly identical to the Keldysh results [2], 
while the equations for Gc and Gac also contain collision terms. 

The "super" self-energy has formally the same functional form as that of the "zero-
temperature" self-energy. In the L-space approach, each of the self-energy matrix elements is 
calculated using the equation of motion of the "hat" and "tilde" superoperators, which is a 
straightforward application of quantum field theoretical techniques. Similar transport equations are 
deduced [7] for the ion and electromagnetic fields from their respective Green functions and self-
energies. The self-energies depend on all the field variables exhibiting the mutual interactions 
among the fields. Thus all the Green's functions become mutually coupled, requiring thereby a 
self-consistent analysis. 

V. FUNCTIONAL TECHNIQUE IN L-SPACE DYNAMICS 

The stationary action principle is the foundation of the time-dependent density functional 
theory of pure-state quantum mechanical systems. The "Schrodinger" Eq. (1), also provides a 
stationary action principle for nonequilibrium statistical mechanics. 

We write the functional of the action in the form 

*{<-'.) = \ J ( W ( » | - &)W)))dt>, (14) 
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subject to the thermal equilibrium initial condition for the p . Thus by varying the left supervector 
and setting the result equal to zero, we obtain the superket Eq. (1). The factor 1/2 is chosen to 
account for the presence of "twins" (doubling) in L-space. 

It is shown elsewhere [8], that W(t,t0) is a functional of averaged fields and they 

completely characterize the supervector |p}). We use the "physical" functional given by 

(4>(f)| = ((l| in Eq.(14) which is now stationary with respect to the variations of the average 

currents J^rt) , average electromagnetic potentials A^t), and average ion positions R(lKt) , 
where / represents the lattice point and K labels the ion species, for a system of electrons, ions, 
and electromagnetic fields. Thus the stationarity of W leads to the equations: 

<5W/5/M=0, 6W/SAfl=0, and 8w/8R = Q. (15) 
The first of the equations in Eq.(15) leads to an effective one-particle Schrodinger equation, the 
second leads to an effective Maxwell's equation, and the third leads to an effective Newton's 
equation for the ions. In general, these equations involve "effective potentials", equal to the 
average potentials in addition to terms describing the mutual interactions with other fields. 

By re-expressing these equations in terms of the Green function language, we can identify 
the terms corresponding to self-energies of the respective fields, given by the "super" Green 
function approach. Thus, we can incorporate the functional form of the appropriate diagrammatic 
expressions into a self-consistent scheme within the functional approach for calculating many-body 
effects which now includes the effects of scatterings. These are discussed in more detail by the 
authors in a separate paper [8]. 

VI. SUMMARY AND CONCLUDING REMARKS 

The functional theory discussed here provides a self-consistent method for incorporating 
many-body and scattering effects in the self-energy to be used in the transport equations. By 
inserting the diagrammatic approximation to the self-energy in a self-consistent loop of the coupled 
equations in functional theory, a more accurate self-consistent self-energy can be generated. This 
algorithm may be considered as a generalization in device physics of the well-known self-
consistent method of solving the Poisson equation along with the quantum transport equation [2]. 
For numerical simulation, it is desirable to take the Weyl transform [2] of Eqs.(ll-13, 15). It is 
hoped that this work would lead to the numerical implementation of the algorithm proposed here in 
self-consistent analyses of nanoelectronics and optoelectronics problems. 
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