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Abstract 

We develop the zero-temperature Green's function formalism to study transport in Si-Si02 

inversion layer subject to both impurity and surface-roughness scattering. Surface-roughness is treated as 
a random potential scattering with a Gaussian correlation function. For the sake of simplicity, we assume 
that the electrons are scattered by randomly located but identical 5-function impurity potentials. The 
position of the subband minima and the electron concentration have been obtained by the self-consistent 
solution of the Poisson, Schrodinger and Dyson equations for each value of the effective transverse 
electric field. We give the analytical expression for the broadening of the electronic states in each subband, 
and the expression for the conductivity that includes the correction due to the normal particle-hole ladder 
diagram. In addition, the numerical results for the density of states function (DOS) for various values of 
the effective field are given. Finally, we present the numerical results for the mobility for various fitting 
parameters. The results for the mobility are in agreement with the experimental results of Kawaji obtained 
at 4.2 K in the region where surface-roughness dominates the transport properties of the system. 

I. INTRODUCTION 

We study transport properties of a (100) Si-inversion layer at zero temperature. We also give the 
results of the numerical self-consistent calculations for the density of states function, electron density and 
mobility for various fitting parameters and different effective fields. The dependence of mobility on the 
electron concentration Ns provides information for the strength of the considered dissipative mechanisms. 

Our calculations are based on two major approximations. We assume that the effective-mass 
approximation is valid, so that we can use the effective masses and the dielectric constants of the perfect 
crystal. We also assume that the envelope functions for the inversion-electrons that satisfy the one-
dimensional Schrodinger-wave equation vanish in the oxide. This is a valid assumption for moderately 
high surface fields. At very high surface fields, the wavefunction of the first subband extends less than 1 
nm in the semiconductor and in this case the approximation probably fails. 

Transport properties of Si-inversion layers at low temperatures are dominated by the elastic 
processes such as impurity and surface-roughness scattering. Surface-roughness is important only at high 
effective fields, where most of the inversion-electrons are trapped in the lowest subband. 

The impurities are described by a random potential u(R) with zero mean value and a correlator 

(wCRWROH^SCR-R'). (1) 
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where nt is the impurity concentration. The <...> denote averaging over all impurity configurations. The 
strength of the impurity scattering is described through the constant U0, equal to the matrix element for 
scattering from a single impurity. 

Surface-roughness is introduced through a random local-potential term, proportional to the linear 
term of the Taylor expansion of the surface potential, of the form [1] 

Hsr(K) = f(r)eEs (2) 

where Es is the surface field. The random function / ( r ) that describes the deviation from the atomically 
flat surface is described by a two parameter Gaussian model, with autocorrelation function of the form 

W5r(|r-r' |) = A2exp r - r ' 
,|2 

(3) 

Parameters A and £ characterize the root-mean-square height of the bumps on the surface and the 
roughness correlation length, respectively. 

From the coupled Dyson's equations for the retarded Green's function, we find that, within the 
diagonal approximation, the broadening of the electronic states for the n-th subband is obtained as a 
solution of the equation 
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l0 is the modified Bessel function of the zeroth order, am(eq,eF) is the spectral density function for the m-

th subband, eF is the Fermi e""-"y, eq is the kinetic energy and 0^ is the overlap factor. The details of 
this derivation are given in [2]. 

Within linear response, the expression for the conductivity can be summarized as 
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Ix is modified Bessel function of first order and en is the subband energy. The first term on the right-hand 
side of (5) represents the Drude result. The second term gives the correction to the Drude conductivity due 
to the normal particle-hole ladder diagrams, as explained in [2]. This term yields a replacement of the 
relaxation time by a transport lifetime for the conduction electrons [3]. 

II. SIMULATION RESULTS 

The self-consistent calculation of the coupled Schrodinger and Poisson equations gives the solution 
for the broadening of the electronic states according to (4). This is then used for the calculation of the 
density of states function and electron density. The process starts with an initial estimate for the potential 
energy profile and then solves all of the forementioned equations successively [4-6]. For the numerical 
solution of the Schrodinger equation, we have applied the Numerov algorithm [7], which is one order of 
magnitude more accurate that the fourth-order Runge-Kutta method. The matching tolerance for the 
wavefunctions was taken to be 10"5 . Finite-difference methods were used for the solution of the Poisson 
equation. We have used Gauss-Legendre integration for the energy integrations in (4-6) to speed the 
computation and decrease round-off errors. 

The potential energy profile is given in Fig. 1. The Fermi energy corresponds to the zero-energy 
level on the figure. The electric field in the oxide is 2xl06 V/cm. The wave-functions for the first two 
subbands for the lowest valleys are shown in the insert. The corresponding electric field profile, is given in 
Fig. 2. The spectral density function due to impurities and surface-roughness scattering is presented in Fig. 

3. The fitting parameters for surface roughness are: A = 0.2nm and C, = l.3nm. In the numerical 
simulation for the broadening of the electronic states, instead of the surface field, we have used the average 
field that is felt by the electrons. The field in the oxide is the same as in Figs. 1-2. In Fig. 4, we present the 
form of the DOS function for various oxide fields. The fitting parameters for surface-roughness are the 
same as above. Due to quantum-size effects, we observe a change in the slope of the DOS curves near the 
subband threshold. This effe?t is more pronounced at higher electric fields, where surface-roughness 
dominates the transport properJes of the system. The shift in the subband energies is due to the increase of 
the oxide field. The mobility curve, as a function of the inversion charge density, is given in Fig. 5 . The 
dots represent the experimental results obtained by Kawaji at 4.2 K [4]. In the region where surface-
roughness dominates the transport (high inversion charge concentration), we achieve very good agreement 
with the experimental data. In the other region, the fitting failed because of the assumed simplified model 
for impurity scattering. In order to improve the results, we need to consider the Coulomb interaction 
properly. From the results presented in Fig. 6, we can deduce the relationship between the average field and 
the inversion density. We calculate that the average electric field varies as Eav=e (0.52Ns+Ndep];)/(eoesc) . 
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