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Abstract 

We present a single band equation of motion for the Wigner function, incorporating the 
effects of a spatially varying band structure. The transport equation is discrete in position, shedding 
light into the numerical aspects of the problem. While conventional upwind differencing to 
approximate the drift term was found adequate for Alo.3Gao.7As/GaAs devices, it is completely 
unsatisfactory in modeling AIAs/GaAs resonant-tunneling diodes, particularly when the large change 
in effective-mass is included. Suggesting a new approach, meaningful steady state conduction curves 
for AIAs/GaAs diodes are presented for the first time. 

Physical Model 

With the need for studying effects of the detailed bandstructure such as T-X transfer in mind, 

the band structure is Fourier expanded: E(k) = ^=IUh2 / n2m*na
2\[l -cos(nka/2)], a being the 

lattice constant. The Brillouin zone is [ -2%/a , 2n/a ]. Given that the masses m*n are spatially 
varying, we obtain the following equation of motion for the Wigner function: 
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where the first line in eq. 1 is the equation of motion if the effective-mass were uniform and 

M<n(q,k) = \dr\ -4— ^ \os\2k{q-r)\ M°(q,k) = Jdr^2^"^W*) = ldrv{r)sin[2k{q-r)} 
{mn(r) mn,GaAs) mn(r) 

v(r) includes, in addition to the self-consistent potential, the T-T offset between the two materials. 

Using the "minimal Hermitian form" (H = -(h2/2\d/dz(l/m*)d/dz + v)[l] to describe the 

effects of spatially varying effective-mass is inconsistent with the Weyl transform. By the Weyl 
correspondence rule, the Hamiltonian in position representation for a parabolic energy band is [2]: 

H = 
8 

1 d2 „<? 1 d d 
r+2 + - + v(z) 

rn{z) dz2 """' dz m*(z) dz " dz2 m*(z)_ 

The equation of motion for the Wigner function in a parabolic band is just the a —» 0 limit of eq. 1. 
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Numerical Model 

Computational resources limit the numerical treatment to nearest and second nearest 
neighbor coupling, and hence only two (appropriately chosen) components in eq. 1 can be included. 
For r - r tunneling the n=4 component is sufficient. The rate of change of the Wigner function f(q , 
k) being determined only by its values at q, q+a, and q-a, eq. 1 is solved on the discrete phase-space 

given by [qj\ qj =j*;j = 1.2 A^J.and {*n| kn = n(2n-l-Nk)/(2NkA);n = 1.2.....Nk] with 

A=a (5.6533 A). We get a set of linear algebraic equations X / v ^ i « ; / ' « ' fj'n' = ^ in w n e r e 
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and b is the boundary contribution. The resulting matrix equation is solved using block LU 
factorization. T, the discrete drift term (the first term on the right-hand-side of eq. 1) will be 
discussed shortly. Me , M° and V are evaluated using fast sine and cosine transforms: 
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For a parabolic energy band, the drift term appears as the spatial derivative of the Wigner 
function. It is then suggested that a stable numerical model be obtained by upwind differencing the 
drift term [1, 3, 4]. Here however, the drift term is already discrete in position. We obtain a 
numerically stable model by making the following approximation in T: 
[f(q + A)-f(q-A)]->[f(q + A)-f(q-&)}+S[f(q + A)-2f(q) + f(q-A)) (3) 

where I 5 l « l so that the deviation from eq. 1 is small, and k5 < 0 for stability (upwind bias). When 
181=1, we have first order upwinding, which is used at the device boundaries. When 181=0, we have 
centered differencing. We apply an upwind bias only to T, the constant effective-mass drift term. 
The current density is defined to satisfy the discrete current continuity equation: 

'sin(2kn A)[(l±S)fj+ln +{lTS)fjn] 

^ i / 2 = i ^ f m*GaAs N, 
•^sin(2kn>A)\Mj+jn_n>fj+ln. + M)n_n.f]n. 

The top sign is used for k < 0 and the bottom sign for k > 0. Since V(q,k-k') strongly couples the 
upwind and downwind flows, the fact that the differencing in eq. 3 is not transportive should not be 
of major concern. In any case, the exact equation of motion is not transportive either. 

Simulation Results 

The above model is first applied to the most commonly simulated Alo.3Gao.7As/GaAs 
resonant-tunneling diodes[l, 3, 4]. The conduction band offset is 0.27eV, m*GaAs=0.067mo, and 
m*AlGaAs=0.092mo. 30A barriers sandwich a 50 A well. The applied bias is dropped linearly 
across the double barrier quantum well structure. The contact is doped n-type at 2x10*8 cm"3. 
Figure 1 shows the flat-band results. The results due to Tsuchiya et al. [1] are also shown. 
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Figure 1: Wigner conduction curves with first order upwinding for Alo.3Gao.7As/GaAs diode. Collisions are 
ignored. Nq = 80, A = a, Nk = 64 as in [1]. Solid lines: our model, dashed lines: Tscuhiya et al. [1]. The 
current density should decrease with increasing effective-mass in the barriers. 

AlAs/InGaAs or AlAs/GaAs diodes are the choice for high speed applications due to their 
high peak current densities and peak-to-valley ratios [5-7]. The inadequacy of the first order 
upwinding begins to surface as we attempt to simulate AlAs/GaAs resonant-tunneling diodes. Here 
we consider our baseline AlAs/GaAs resonant-tunneling diode. o The conduction band offset is taken 
to be l.OeV, m*GaAs=0.067mo, and m*AlAs=0.15mo. 17 A barriers sandwich a 50 A well. On 
either side of the tunneling structure is a three step spacer layer consisting of 50 A undoped GaAs 
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Figure 2: Conduction curves for AlAs/GaAs diode a) heavy lines: flat-band Wigner curves using first order 
upwinding. Schrodinger curves are shown as light dashed lines, b) self-consistent curves. The heavy lines are 
Wigner curves using second order upwinding (SDS), the light dashed lines using first order upwinding (UDS). 
Collisions are ignored. Nq = 268, A = a, Nk = 128 in the Wigner calculations. The results are far from being 
satisfactory. Increasing Nk to 256 led to similar results. A = a/2, Nq = 536, Nk = 256 does not help either. 

closest to the barriers, 100 A, 5x l0 1 6 cm - 3 n-type GaAs and 100 A, 6x l0 1 7 cm' 3 n-type GaAs. The 
contact regions are 4 x l 0 1 8 cm - 3 n-type GaAs. Figure 2a shows the Wigner conduction curves using 
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first order upwinding under flat-band conditions. For comparison the Schrodinger results are also 
shown. Figure 2b shows the self-consistent (potential is self-consistent to within lO'^eV) Wigner 
conduction curves obtained by using first and second order upwinding. Flat-band, constant mass 
calculations have been reported for InGaAs/AlAs diodes using first order upwinding [8] and as can 
be seen from fig. 2a, under such conditions, the problems with the approach are not obvious. 

To improve the fidelity of the numerical model to the exact equation, we use 15 1= 0.1 in eq. 
3. The resulting curves are shown in fig. 3a. The improvement over the other approaches is 
remarkable. For comparison, the Schrodinger-Poisson curves are also shown. Finally, including 
collisions in the relaxation time approach (% =100fs) and using 18 I = 0.01, the simulated and measur-
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Figure 3: Improved Wigner conduction curves for AlAs/GaAs diode, a) heavy lines show the Wigner-Poisson 
results (collision free, I 8 | = 0.1) and the light lines are due to the SchrOdinger-Poisson model, b) x = lOOfs, 181 
= 0.01. Nq = 268, A = a, Nfc = 128. Also shown is a typical measured curve (300K) for our baseline. 

ed curves are compared in fig. 3b. The poor agreement beyond the peak is an unresolved problem 
and has been the subject of intense discussions. 

In conclusion, self-consistent steady state conduction curves for GaAs/AlAs resonant-
tunneling diodes have been presented for the first time. The inclusion of the higher effective-mass in 
AJAs is essential. A new approach to obtaining meaningful conduction curves has been proposed 
and leads to much improved results. 

Calculations were done on IBM RS/6000 models 590 and 320H. This work was sponsored 
in part by the Joint Services Electronics Program under Grant No. AFOSR 49620-92-C-0027, and by 
the Air Force Office of Scientific Research under AASERT Grant No. AFOSR F49620-93-1-0479. 
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