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Abstract 

Electron mobility in a quantum wire of GaAs/AiGaAs heterostructure is calculated by using the 
Boltzmann transport equation and detailed balance equation, where the results of self-consistent 
calculations for the eigen states and energies of electrons in the quantum wire system are used to 
evaluate the conductivity. Resonant behavior of the conductivity is expected due to the resonant 
scattering of electrons between the subbands induced by longitudinal optical phonon scattering. 
The resonance is shown to depend on the magnitude of one-dimensional form factors which are 
proportional to the transition probability of electrons in quasi-one dimensional system. 

1. INTRODUCTION 

It has been pointed out that the suppression of small angle scattering in quasi-one dimensional 
structures results in an enhancement of electron mobility at low temperatures [l]. At high temper­
atures, however, electron-longitudinal optical (LO) phonon scattering will play an important role in 
quantum wires (QWs) of GaAs/AlGaAs. In QWs fabricated on GaAs/AlGaAs heterostructures, 
electrons are confined just below the hetero-interface and the gate electrodes fabricated on the 
surface form quasi-one dimensional electron gas (QlDEG), where the electron density in channel 
area can be controlled by gate voltage. In other words, electronic states may be changed by the 
gate voltage, and thus we can tune the inter-subband energy to the optical phonon energy. Since 
the electron mobility in QWs at high temperatures is limited by the optical phonon scattering, an 
oscillatory behavior of electron mobility is expected when the gate voltage is changed [2,3] or when 
a high magnetic field is applied [4,5]. In the present work, we calculate the conductivity in a typi­
cal gated QW structure and show that the resonant behavior similar to magnetophonon resonance 
appears by changing the gate voltage without the presence of magnetic field. For this purpose 
we solve the Poisson and Schrodinger equations self-consistently and obtain one dimensional eigen 
states and then calculate electron mobility in a QW at high temperatures. The magnitude of the 
resonance depends strongly on the parity of the wave functions in the direction perpendicular to 
the heterointerface. 

2. SELF-CONSISTENT CALCULATION 

We consider a mesa etched quantum wire structure [6] shown in Fig 1. As shown in Fig 1, we 
choose y and z directions as parallel and normal to the interface, respectively, and the motion of 
electrons is quantized in these two directions. Up to 20 subbands are calculated self-consistently in­
cluding different confinement in z direction, where we solved the Poisson and Schrodinger equations 
numerically by discretizing the structure in a nonuniform rectangular mesh. In Fig 2, we present 
calculated results of subband energies as a function of gate voltage. The subband index (n,m) is 
used in Fig 2, which represents node number n of the wave function in the y and node number m in 
the z directions. For example, eigen state (0,1) indicates the first quantization state in y direction 
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Figure 1: Cross-section of a mesa etched 
Al-gated QW structure used for the 
present calculations. The device consists 
of an unintentionally p-doped GaAs sub­
strate (NA< 1014cm-3), followed by an 
undoped AlGaAs spacer layer and an n-
doped AlGaAs cap layer (Nj> = 1.5 x 
1018cm-3). 
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Figure 2: The electron eigen energies in 
the QW shown in Fig 1 at T = 150 K. 
The dotted lines represent the eigen states 
(n,0) and the dashed lines represent the 
eigen states (n, 1). The arrows indicate 
relevant transitions. The index (n, m) rep­
resents the number of nodes n of the wave 
functions in the y direction and m in the 
z direction. 

0.3 

and the second quantization state in z direction. It is seen in Fig 2 that the eigen enereies arP 
lowered when the gate voltage is swept in the forward direction, and that manv < T » h h 3 
below the Fermi level (OeV of the vertical scale), resulting in an e n h a n c e d o f ^ r r t p o p u l S 
and the reduction of subband spacing. A typical result of the electron wave functions in the OW 
is shown m F,g 3, where the subband energies and potential profile are also p i t t e d L d o S S 
lines and dashed curve, respectively. As shown in Fig 3, the potential profile J o n l f ^ L t ^ 
quasi-triangular and the first peek (lefthand side) of the wave functions appears at a L n S th 
position. Since the matrix elements (the form factors) are expressed l ^ £ £ X £ * M 
we may expect a large value for the overlap integral between eigen states of\7Z 2L f iJ. +

L-J' 
the y direction and different confinement in the "direction andThe S ^ ^ S S ^ S T tJ!" 

Q ^ s t T u c t u ^ S t a t e S ' ^ t h e f ° , , O W i n g ^ ^ ^ a C a k U , a t e d ^££S££% tt 

3 . C A L C U L A T I O N O F C O N D U C T I V I T Y I N A Q U A N T U M W I R E 

mJS^^lt t h e S C a t t e r i n S P r 0 b a b U i t y Wii> b G t W e e n S U b b a n d • a n d * - given by the 

Ga>(qx) = Jdpljdp2Ko(qx\pl - ftD^^i)*,-^)*?^)*.^^) 

Wiit(k,k') = * * / ^ ? (No + l ± I) Gu-(q)S(e(k') -e(k) + Ei, - Ek± hu0) 

(1) 

(2) 
(g = k-k% 

where *,(/>)(/> = (y,»)) is the wave function of the eigen state i = („, m) and KQ is the modified 
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Figure 3: Calculated electron wave func­
tions (solid lines) and potential profile 
(dashed line) along z direction of the QW 
shown in Fig 1 at Vs = 0.0 V. too and t 0 1 

are the wave functions of the (0,0) state 
(ground state) and the (0,1) state, respec­
tively. 
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Gate voltage Vg(V) 

Figure 4: Calculated conductance as a 
function of gate voltage in the QW shown 
in Fig 1 a t r = 1 5 0 K . 

Bessel function of the second kind, or is the Frohlich's coupling constant, m* = 0.067mo is the 
electron effective mass and huo = 36.2 meV is the LO-phonon energy in GaAs bulk, NQ is phonon 
number, and E{ denotes subband energy of eigen state i. The ± sign in equation (2) corresponds 
to the emission and the absorption of LO-phonon, respectively. 

The electron conductivity in a QW is calculated as a function of gate voltage using the Boltz-
mann transport equation and the detailed balance principle. Figure 4 shows the calculated result 
of conductance-gate voltage characteristic of a QW at T = 150 K. It is very interesting to point out 
that the calculated magnitude of the conductivity is very close to the experimental result of Ismail 
[2], where he used similar structure of a quantum wire. He observed a dip in the conductance-gate 
voltage characteristic, whereas the present calculation shows several weak dips in the region from 
0.1 to 0.3 V. The increase in the conductivity with the gate voltage is interpreted in terms that the 
electron density increases with increasing the gate voltage. In order to see the weak structure in 
the conductance curve more clearly, we deduced the oscillatory components by deducting a smooth 
curve of the least square fit from the conductance. The oscillatory component thus obtained is 
plotted in Fig 5, where we see more detailed structure. Although the oscillatory structure is very 
complicated, some of them are well explained with the help of the results shown in Fig. 2, where 
the arrows show the resonant transition of the electrons (the length of the arrow is the LO phonon 
energy). From a comparison between Fig. 2 and Fig. 5, the oscillatory structures at about 0.2 
and 0.24 V are ascribed to the resonant transition from the subband with the index m ~ 0 to the 
subbands with the index m = 1. Other transitions indicated by the arrows in Fig 2 are expected 
to be weaker because of the small value of the form factor as discussed in previous section. From 
the present work we find that the strength of transitions between the subbands in a QW structure 
strongly depends on form factors. We present the calculated form factors in Fig 6 for a gate voltage 
Vj = 0.2 V. It is clearly seen in Fig 6 that the form factor for the transition between the (0,0) 
state and the (0,1) state is large enough to dominate the reduction in the conductance because the 
energy separation between the subbands is very close to the LO phonon energy at this gate voltage. 
Similar situation occurs at the gate voltage Vg = 0.24. These oscillatory structures are found to be 
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Figure 5: The oscillatory structures of the 
conductance at T = 150 K. 
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Figure 6: The form factors Got (see the 
text for the definition) between the ground 
state and the excited state in the QW at 
Vg = 0.2V (solid circles : G(0>o)-»(n,o)i 
open circles : G(o,o)-+(n,i))-

very weak compared with the experimental result reported by Ismail [2]. Taking into account the 
difficulty in obtaining a uniform QW structure, the energy subband structure of a real QW is not 
so sharp compared with the ideal one used in the present calculation and the broadened nature of 
the density of states will allow the LO phonon scattering in wider range of energy, resulting in a 
broadened conductance minima. 

4. C O N C L U S I O N 

Self-consistent calculation was carried out to obtain electronic eigen states in a QW and the conduc­
tance was evaluated by calculating the electron mobility based on Boltzmann transport equation. 
The calculated conductance was found to exhibit minima as the resonant intersubband transition 
occurs. The dominant contribution to the minima arises from the intersubband transition between 
the (0,0) and (0,1) subbands in the QW structure used in the present calculations. 
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