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Abstract 

Electron-phonon and electron-electron interactions are commonly included in semiclassical device 
simulation programs. However, such interactions are often neglected in the simulation of quantum 
devices. In this talk we will describe a general approach to quantum device simulation based on the 
non-equilibrium Green's function (NEGF) formalism that allows us to include these interactions. 

L INTRODUCTION 

The cornerstone of semiclassical transport theory is the Boltzmann equation 

v.W + (eE/ft).Vkf + Soutf = S i n( l - f) 0.1) 

which describes the behavior of the distribution function f(rjc). This description is based on a physical 
picture which views electrons as particles that move in the external electric field according to "Newton's 
laws" (the quotes are used as a reminder that bandstructure effects are included) and are scattered by 
the random microscopic fields arising from impurities, phonons or other electrons (described by the 
functions Sin(r,k) and Sout(r,k)). The Boltzmann equation effectively combines semiclassical dynamics 
with a stochastic description of the scattering processes: 

Boltzmann => "Newton's laws" + Random scattering 

This approach works quite well for most devices under most conditions. However, there are quantum 
devices like resonant tunneling diodes which cannot be described at all within this semiclassical 
framework. Their operation is based on quantum interference effects arising from the wave nature of 
electrons. Moreover, as devices shrink to smaller dimensions, it is expected that quantum interference 
effects will become increasingly significant even in the operation of conventional devices. In order to 
include these effects we need a quantum version of the Boltzmann equation which combines quantum 
dynamics with a stochastic description of the scattering processes. The non-equilibrium Green's 
function (NEGF) formalism (also referred to as the Keldysh formalism) provides us with just that: 

NEGF => "Schrodinger equation"+ Random scattering 

In this talk we will briefly summarize this formalism. For more details we refer the reader to the cited 
references and the references therein. 

H. BASIC CONCEPTS 

Before we can introduce the NEGF formalism we need to discuss a few basic concepts. 
Consider a homogeneous conductor. In the semiclassical picture we can describe the electrons by 
specifying the distribution function f(k) which tells us the number of electrons occupying a particular 
state 'k'. But in the quantum mechanical picture this is not enough. We also need to specify the phase-
relationship among the different states. One way to do this is to define a density matrix p(k,k'). The 
distribution function f(k) only gives us the diagonal elements of this matrix: 
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f(k) = [pOck')] ,^ 

The rest of the story is contained in the off-diagonal elements which cannot be neglected unless the 
phase-relaxation length is much shorter than the other length scales. 

It will be noted that although we have used a representation in terms of k-states to define the 
correlation function, we can always transform to other representations using an appropriate unitary 
transformation. For example we could transform to a real space representation as follows: 

p(r,r') = (r!p|r') = 5>|k)(k|p |k ')<k' | i '» 
k,k' 

1 v« 
= — 2^p(k,k*) exp[i(kr - k' f )] (V = normalization volume) 

Vk,k* 
In principle it is possible to find a representation that diagonalizes the correlation function. In such a 
representation there are no phase-correlations to worry about and we could use semiclassical 
reasoning. In practice it may not always be convenient to find this special representation or to use it. 

To include the time coordinate into this description, in general we need a two-time correlation 
function of the form Gn(k,k';t,t*). In steady-state problems, the correlation function depends only on 
the difference between the two times and can be Fourier transformed to yield 

Gn(k,k';E) = JdxGn(k,k ' ;T)e- i E x /* ( x s t - f ) (II.l) 

One way to understand the Fourier transform relationship between the energy 'E' and the difference 
time coordinate (t-f) is to note that the wavefunction of a particle with energy E evolves in time with a 
phase factor of exp [-iEt/ ft\. Consequently 

\|/(t)\|/*(t') ~ exp [-iE(t -t)/h] 

This suggests that the Fourier transform of the correlation function with respect to (t-t') should yield 
the energy spectrum. 

Some treatments of quantum transport are based on the equal time correlation function 
obtained from Gn(k,k';t,t') by setting f = t. It is straightforward to show that this is equivalent to 
integrating Gn(k,k'; E) over all energy: 

dE [Gn(k,k,;t,t*)l = f^Gn(k,k';E) 
I J t=t' J 2% 

As a result the energy-resolved information is lost making it difficult to describe scattering processes 
which transfer electrons from one energy to another. In general we need to use the full two-time 
correlation function. Since our interest is confined to steady-state transport, the correlation function 
depends only on the time difference (t -1*) and can be Fourier transformed to obtain Gn(k,k'; E) as 
described above. This energy-dependent correlation function is what we will use in this talk. 

In the semiclassical picture we can define a function Sout(k,t) that tells us the rate at which 
electrons are scattered out of a state 'k' assuming it is initially full. In a quantum mechanical 
description we have to generalize this concept, too, to include phase-correlations: 

Sout(k,t) -> Zout(k,k';t,t*) 

Once again for steady-state problems the outscattering function depends only on the difference time 
coordinate and can be Fourier transformed yield an energy-dependent outscattering function 
E O U t ^ ; E ) . 
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In deriving semiclassical kinetic equations we usually balance the outflow of electrons against 
the inflow of electrons. The inflow of electrons can alternatively be viewed as an outflow of 'holes' 
(whose number is given by (1-f)). We use the quotes as a reminder that we are talking about holes in 
the conduction band itself (we are considering only one band) and not in some other valence band. 
To describe the outflow of holes in the quantum formalism we define a hole correlation function GP 
and an inscattering function Z i n (which is a hole outscattering function) using exactly the same 
argument as we used above for electrons. 

Before proceeding further we should point out that we are using a notation that is slightly 
different from the standard notation in the literature. We have deliberately chosen the notation to 
reflect the physical meaning of these functions. The correspondence, however, is quite straightforward: 

Gn ,GP,S i n ,Eou t -* - iG < ,+ iG > , - iE < ,+ i2 : > 

This set of four functions Gn, GP, Z i n and Z o u t (which are the quantum analogs of the semiclassical 
concepts f, (1-f), S in and Sout) provide us with the language needed to include phase-correlations into 
a transport theory. If we represent our device by a set of 'N' nodes (in real space or in momentum 
space or in some other representation), then each of these quantities is a matrix of dimensions (NxN) 
at a given energy "E". From hereon we will not write the energy coordinate 'E' explicitly for clarity. 

m . KINETIC EQUATION 

The correlation function is related to the scattering function by the relation 

G n = G R 2 i n G A (III.l) 

This equation is written in matrix notation and could be applied in any convenient representation. The 
Green's function GR is calculated from a Schrodinger-like equation 

[ E I - H 0 - L R ] G R = I (III.2) 

where Ho is the Hamiltonian operator describing the device and I is the identity matrix (the other new 
function GA is just the Hermitian conjugate of GR). 

To understand the physical meaning of the Green's function we note that in ordinary quantum 
mechanics the wavefunction of an electron is described by a Schrodinger equation [ E I - H Q 1 * F = 0 . 

Comparing with Eq.(III.2) for GR we note two differences. Firstly there is a delta function source term 
(I) on the right hand side of Eq.(III.2) suggesting that the function GR(r,r') be interpreted as the 
wavefunction at Y due to a delta function source at r' in the position representation. Similar 
interpretations are of course possible in other representations as well. Secondly there is an extra term 
E R known as the self-energy. It represents the effective potential that an electron feels due to its 
interactions with phonons, other electrons etc (which are not included in Ho). 

It is interesting that we can rewrite the Boltzmann equation (Eq.(I.l)) in a form that looks a lot 
like Eqs.(in.l) and (ffl.2). We could define a Green's function gR as follows 

v. VgR + ( e l / n).Vkg
R + (Sou t + Sin) gR(r,k;r* ,k') = 8 ( r - r ' ) 8 ( k - k ' ) (III.3a) 

and express the distribution function in terms of this Green's function: 

f(r,k) = Jdr' dk' gR(r,k;r' ,k') Sin(r' ,k') (III.3b) 
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IV. SELF-ENERGY FUNCTIONS 

In order to perform any concrete calculations based on the Boltzmann equation we need a 
recipe for calculating the functions S in and So u t . These functions describe the physics of the 
interactions and the precise recipe depends on what interaction we want to describe and what 
approximation we wish to use. In the quantum formalism the same is true of the functions £ i n , £ o u t 

andER . For a detailed description of different types of interactions we refer the reader to [2]. Here 
we will simply summarize the results for electron-phonon interactions in the self-consistent Born 
approximation (SCBA) and for electron-electron interactions in the Hartree-Fock approximation. 

Phonon scattering in lowest order perturbation theory is described by 

X^C?,? ;E) = J d ( t o ) D(r,F ; t o ) Gn(r ,F ;E-foo) (IV.la) 

Zo u t(r ,F ;E) = Jd(foo) D(r,F ;£eo) Gp(r ,F ;E + hm) (IV.lb) 

where the function D describes the spatial correlation and energy spectrum of the phonons ( t o > 0 
corresponds to absorption and h(£K 0 to emission). 

D(r,F;to) = £ 
q 

U q 

exp[-iq. (f - F)] Nq5(© - coq) 

+ exp[+iq. (r - F)] (Nq +1) S(© + ©q) 
(IV.2) 

where Nq is the number of phonons with wavevector q and frequency C0q and Uq is the potential felt 
by an electron due to a single phonon with wavevector q. Assuming that the bath of phonons is always 
maintained in thermal equilibrium Nq is given by the Bose-Einstein function. The self-energy function 
is given by 

2R(E) = r H (E) + - r ( E ) where r(E) = S in(E) + Zout(E) (IV.3) 

and TH(E) is the Hilbert transform of T(E). 
Electron-electron interactions in the Hartree-Fock approximation, do not give rise to any £ i n , 

S o u t . It only contributes to X R : 

ER(f ,? ;E) = UH(r) 8(r - P ) + Zp(r ,? ) (IV.4) 

The first term is the Hartree potential: 

U H f f W t f ' j f G V ^ E ) ; ^ (IV.5) 

The second term is the exchange potential: 

V f f . F ^ - J d E G - ^ E ) — ^ (IV.7) 

The superscript *s' is added as a reminder that an electron only feels an exchange potential due to 
other electrons of the same spin. 
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V. TERMINAL CURRENT 

In general we are interested in calculating the cuiTent that flows when a conductor is connected 
by to two (or more) contacts across which a potential difference is maintained by an external source. 
So far we have not worried about the leads connected to the conductor. One way to treat the leads is to 
impose an appropriate boundary condition on Gn(r,r';E) and GR(r,r';E) when solving Eqs.(III.l) and 
(III.2), in the same way that we impose boundary conditions on the distribution function f(r,k) in 
semiclassical theory. Once we have solved for Gn(r,r';E), we can calculate the current density J(r,E) 
throughout the conductor and then integrate over the cross-section to obtain the current in the contact 
[6,7]. 

An alternative approach that is often very convenient is to introduce the effect of the leads 

through functions £ ^ , I,^1 and Z ^ (defined for each lead 'm') and add it to the functions E*?, 

E°u t and Ej? describing the interactions. 

£in,out,R _ y-in,out,R + V1 x-in»out.R ("VII 

m 

Using a discrete lattice, or what is often referred to as the 'tight-binding' model, the self-energy 
function due to the leads can be written as [5] 

£m(i,j;E) = -t<t)m(i)e,k"na <|.m(j) (V.2) 

where E = U m + 2 t ( l - cos(kma)) 

Here T and 'j' are points on a discretized lattice with spacing 'a' and t = h 12ma . The self-energy is 
non-zero only for lattice sites that are adjacent to the lead with mode 'm' and 6 represents the 
transverse wavefunction corresponding to mode 'm'. Um is the potential energy in lead 'm*. 

The inscattering and outscattering functions corresponding to the leads are given by 

E jj(i, j;E) = f m(E) r m ( i , j;E) (V.3a) 

2™' (>» J'E> = $ " f m ( E ) ) Tm& J ; E ) ( V - 3 b ) 

where rm( i , j ;E)= $ m ( i ) ^ H m ( J ) and hvm =3E/3k m =2at sin(kma) 
3. 

Here we have assumed that each mode 'm' in the leads is maintained in local equilibrium with some 
Fermi distribution fm(E). 

It seems feasible to do something similar in semiclassical theory as well, namely, define 
^out 

calculated from the relation 

functions S™(k) and S^QO corresponding to each contact 'm'. The current in lead 'm' can then be 

Im~ XSm (k> (1- f (k) )-Sm t (k) f (k> ( V 5 ) 

k 

We are not aware of anyone using this approach in semiclassical theory, but it has been used 
successfully in the quantum version. The quantum analog of Eq.(V.5) is given by 
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^ f j d E T r [ z | ^ P - 2 5 * G » ] (V.6) 

VI. EXAMPLES 

To apply Eqs.(III.la,b) to a specific conductor we could discretize the spatial coordinate into a 
discrete lattice with N points. All the matrices like Gn, GR, £ i n etc. are then of order (NxN). the 
energy coordinate T.' too has to be discretized into a convenient number of nodes. At each energy 
node, we have to invert (NxN) matrices. The functions £ i n , E o u t and £ R then have to be 
recomputed and the calculation repeated till the process converges.At low temperature and bias a 
single energy node is adequate allowing us to handle conductors with many spatial nodes. So far we 
have applied this formalism to (1) two -dimensional conductors at low temperature and bias. This 
includes the study of the Hall effect (low and high magnetic fields) in ballistic as well as disordered 
conductors [6] and (2) one-dimensional conductors at room temperature and large bias. This involves 
the study of current flow and energy dissipation in single barrier and double barrier structures [7]. 

VH. FUTURE DIRECTIONS 

The NEGF formalism provides a general framework for quantum transport comparable to that 
provided by the Boltzmann formalism for semiclassical transport. In this talk we have described how 
this formalism can be used to describe steady-state transport in mesoscopic devices. Although the 
basic ideas seem clear, much remains to be done in terms of incorporating realistic scattering models 
and bandstructure effects. 

There are two areas where the basic concepts are not fully clear. One is the area of transient or 
ac response. The other is the area of transport in strongly interacting systems. The Coulomb blockade 
regime which has attracted much attention lately belongs to this category. The calculation of self-
energy and scattering functions describing the interactions (Section IV) is based on perturbation 
theory which is not valid for strong interactions. Under these conditions we cannot use Eqs.(III.l) and 
(III.2) to calculate Gn, GR etc. Alternative non-perturbative techniques are needed [8,9]. Interestingly 
the Boltzmann formalism too runs into similar difficulties when applied to strongly interacting 
systems. We then have to worry about higher order (two-particle, three-particle) distribution functions. 
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