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Abstract 

A quasi 3D simulation of a quantum waveguide coupler has been performed. The Schrodinger 
and Poisson equations have been solved self-consistently in each of the 2D slices into which the 
device has been subdivided. A modified recursive Green's function algorithm is used to compute 
the waveguide and tunneling conductances. 

I. DEVICE MODEL 

We have studied a device model based on the structure reported by Eugster et ai. in Ref. 1, 
assuming a layer arrangement (Fig. 1) for the shallow heterostructure as reported in Ref. 2. The 
gate geometry of our model corresponds faithfully to the real device in the central portion, where 
coupling between the two waveguides takes place, while differs in the outer regions (dashed lines 
in Fig. 2), where we have assumed semiinfinite quantum wires instead of tapering off from a 
2DEG, for reasons of computational convenience. The model has been divided into 2D slices 
along the longitudinal direction, assuming that the potential profile is going to be constant within 
each slice. The Schrodinger and Poisson equations have been solved self-consistently in each slice, 
obtaining eigenvalues and eigenfunctions to be used for the conductance calculation. Our quasi-
3D approach is based on the hypothesis of quasi-adiabatic variation of the potential along the 
longitudinal direction, which allows solving for the potential separately in each slice. Finally, the 
Green's functions for the whole structure are computed and from them we obtain the transmission 
coefficients and, consequently, the conductances, via the Landauer formula. 
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Fig. 1. Layer diagram of the heterostructure Fig. 2. Gate geometry 
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II. MODIFIED GREEN'S FUNCTION METHOD 

In order to compute the transmission and reflection coefficients and thus the conductances in 
our model device, we have used a modified version [3] of the Recursive Green's Function Formalism 
[4,5,6]. 

The basic idea consists in computing the Green's functions for ID chains with Dirichlet bound­
ary conditions at their ends. Each ID chain represents the propagation of a 2D transverse mode 
within a slice characterized by a constant transverse potential profile. Due to the invariance of 
the potential along the longitudinal direction, the various transverse modes do not couple within a 
single slice, therefore their representation with ID chains is rigorously correct. 

The Dirichlet boundary conditions imply isolation of each section from the neighboring ones. 
The Green's functions of the connected structure are evaluated by applying a perturbation corre­
sponding to joining the ends of the chains belonging to different sections and removing the Dirichlet 
boundary conditions. The perturbed Green's functions are obtained from the Dyson equation, eval­
uating the effect of the perturbation to all orders 

G = Go + G0VG, 

where G0 is the Green's function for the unperturbed system, G the one for the perturbed system 
and V represents the perturbation potential, corresponding to coupling between neighboring slices. 

The Green's functions for each ID chain are computed with a discretization based on a tight-
binding description of the device geometry. The present approach, however, differs from the one 
of Ref. 6, because we are not using a square tight-binding lattice. Usage of a square lattice is 
convenient when studying disorder induced phenomena, i.e. when rapid fluctuations of the poten­
tial occur in all directions. In the present calculation we use a tight-binding discretization only 
along the longitudinal direction parallel to the waveguides, while along the transverse direction we 
consider simply a number of modes sufficient to accurately describe the coupling between slices. 
This formulation of the problem yields an immediate advantage: it is possible to use a very fine 
discretization in the longitudinal direction, while keeping the number of transverse modes and 
therefore the size of the matrices to be inverted [6] down to reasonable values. A fine discretization 
in the longitudinal direction is important to obtain a good representation of the continuum energies: 
the actual tight-binding dispersion relation is cosinusoidal, only in the region around the origin it 
properly reproduces the parabolic dispersion relation of continuum. 

The elements of the coupling matrix V are the mode overlaps between the transverse modes of 
the corresponding pair of slices, multiplied by the tight-binding hopping potential [6]. The mode 
overlaps are computed taking the discretized overlap integral between the wave functions relative 
to the modes being considered. 

Numerical resolution of transverse modes in each slice requires a fine 2D grid in the quantum 
well (QW) region. The overlap integrals are computed on a common grid which must be fine over 
the QW regions of all slices and which therefore has very many lines. We use specialized methods 
to solve the resulting large, sparse eigenvalue problems. 

III. SELF-CONSISTENT SCHRODINGER-POISSON SOLUTION 

As in Ref. 7, the resolution of the transverse modes in each slice is an iteration to self-
consistency of the Schrodinger equation for the wavefunctions and a nonlinear Poisson equation for 
semi-classical charges such as ionized dopants. We take the surface charge density to be constant 
between contacts at -3 .3 x 1012 cm"2. At 1.6 K, this Poisson equation is highly nonlinear, with 
effects such as acceptor freezeout in the substrate occurring practically discontinuously, which re­
quires a grid refinement at the freezeout depth. The coupling between the Poisson and Schrodinger 
equations is also very dramatic, with slight perturbations in the potential resulting in a complete 
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change in the number and shape of the occupied wavefunctions. For this sensitive problem, we use 
a fixed-point iteration in the most sensitive quantity, the quantum electron density. 

The iteration progresses by successive solution of the nonlinear Poisson and Schrodinger equa­
tions. It is clear that a fixed point of this iteration corresponds to a self-consistent solution. It is 
also clear that the nature of the iteration will be oscillatory, with underfull wavefunctions causing a 
deepening of the QW, leading to overfull wavefunctions, and vice versa. In the early iterations, we 
use adaptive underrelaxation to stabilize the oscillations. Close to the solution, we use a Jacobian-
free approximate Newton method to accelerate the convergence to self-consistency. Our experience 
is that this is a very effective way to handle the nonlinearlity in the model [8]. 

The nonlinear Poisson equation is solved using a Newton method with inexact linesearch. We 
take zero-field boundary conditions in the air above the contacts and to the sides, Dirichlet bound­
ary conditions in the contacts that include a Schottky barrier of 0.9 eV, and Dirichlet boundary 
conditions in the substrate for charge-neutrality, determined by a bisection search of the bandgap. 
The Jacobian is solved for the Newton direction using the Conjugate Gradient (CG) method on 
a reduced system obtained by block Gaussian elimination of a red-black reordering of the matrix 
from a 5-point discretization on a rectangular grid, as in [8]. This gives an order of magnitude 
speedup over straight CG. 

The eigenvalue problem for the Schrodinger equation can be effectively solved with a version of 
RITZIT [9] modified to use column operations, providing the spectrum is first shifted to make the 
desired eigenvalues the largest in modulus. However, we have developed a more efficient Chebyshev-
preconditioned Krylov subspace method. Both of these solvers are projection methods [10], which 
reduce the complexity of the eigenvalue problem by finding a small invariant subspace of a matrix 
rather than its entire spectral decomposition. Although the fine grid to resolve the transverse 
wavefunctions results in a large, sparse eigenvalue problem, only the few lowest energy levels that 
are occupied are relevant to the problem. The higher energy levels are squashed by Chebyshev 
preconditioning in both solvers, so that the subspace iteration in RITZIT and our Krylov subspace 
iteration converge specifically to the desired modes. 

IV. RESULTS 

We have been interested in simulating lD-to-lD tunneling in this structure, therefore we have 
chosen electrode bias values tuned to obtain significant coupling between the wires. It turns out 
that appreciable coupling is reached only with a central gate bias of -0.6 V, which corresponds to 
the threshold for depletion of the 2DEG under an infinite gate. In our model device this does not 
lead to coupling between the outgoing leads, due to the depleting action of the source and drain 
electrodes that are in close proximity of the gate. In the real device geometry, at this gate voltage 
the two channels would probably be short-circuited, due to strong coupling far from the central 
region. This may be the explanation for the problems reported [11] in the observation of lD-to-lD 
tunneling. 

In Fig. 3 we report the results for the conductance between the ends of the same waveguide 
(upper curve) and between the end of one waveguide and the other end of the other waveguide 
(lower curve) vs. the length of the central slice, where most of the coupling takes place. Bias values 
are constant: VG=-0.6 V, VD = F s = - l - 6 5 V. As expected, we observe a substantially oscillatory 
behavior of the tunneling conductance for increasing length of the central section. Oscillations in 
the tunneling conductance have opposite phase with respect to the ones in the direct conductance 
in order for the total current to be constant. Even in this extreme bias condition the coupling never 
reaches 2e2/h. 
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Kg. 4. Conductance of the drain waveguide (dot­
ted line), of the source waveguide (dashed line) 
and tunneling conductance (solid line) vs. bias. 

In Fig. 4 results are shown for the conductance of the source-side waveguide (dashed line), 
the drain-side waveguide (dotted line) and between the two waveguides (solid line) as a function 
of the bias of the source electrode. The gate and drain biases are kept constant at -0.6 V and 
—1.7 V, respectively. We observe peaks (indicated by arrows) of the tunneling conductance in 
correspondence with the opening of new modes in the source waveguide, in analogy with what has 
been observed experimentally for the lD-to-2D tunneling. Conductance quantization for the source 
waveguide when the source bias is swept is rather poor, as in the experimental results of [l]. This 
may also be due to reflections in the bends, besides the effects of finite temperature (1.6 K) and of 
coupling. 
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Fig. 3. Conductance between the end of the same 
waveguide (upper curve) and tunneling conduct­
ance (lower curve) vs. coupling length. 
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