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Abs t rac t 

Quantum transport in low dimensional nanostructures is examined with an exactly solvable real-
space three-dimensional supercell model. Applications to the following examples are discussed : 
(1) finite length quantum wires, (2) alloy clustering effects in single barrier tunnel structures, and 
(3) quantum dot arrays. 

I. INTRODUCTION 

We developed a flexible 3D model aimed at exploring issues relevant to quantum transport in 
nanostructures, including effects of reduced dimensionality and structural inhomogeneities. Using 
our method we have demonstrated that interfacial inhomogeneities in double barrier resonant tun­
neling diodes can induce lateral localization of wave functions [1]; strongly attractive impurities can 
produce additional transmission resonances [2]; and surface roughness in quantum dots can cause 
large fluctuations in transmission characteristics [3]. In this paper, we examine transport through 
single barrier tunnel structures with alloy clustering, and relate it to transport through quantum 
wires. We also examine transport through quantum dot arrays. 

II. METHOD 

We use a planar supercell tight-binding Hamiltonian and specify the active region of a structure as 
a stack of Nz layers perpendicular to the z-direction, with each layer containing a periodic array of 
rectangular planar supercells of Nx x Ny sites. Within each planar supercell, the potential assumes 
lateral variations as dictated by device geometry. Our method obtains exact scattering plane wave 
solutions [1, 2], subject to supercell periodic boundary conditions in the x- and ^-directions, and 
open boundary conditions in the z-direction. Our method requires accurate and efficient solutions 
of large sparse linear systems, which is achieved using the quasi-minimal residual method [4]. 

III. APPLICATIONS 

We apply our method to the following examples : (1) finite length quantum wires, (2) quantum dot 
arrays, and (3) clustering effects in alloy barriers. In all three cases, the band edge and effective 
mass values for well- and barrier-type materials used are : E^Q = 0 eV, m ^ = 0.0673 mo, EQ = 
1.05 eV, m*B = 0.1248 mo; the choice of these material parameters nominally correspond GaAs and 
AlAs, respectively. 

1. Finite Length Quantum Wires 

We first examine finite-length quantum wire electron waveguides. We consider GaAs quantum 
wires surrounded on the sides by AlAs walls, and the ends by GaAs electrodes. The wires have 
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4QAx40A cross-section, and wire lengths ranging from 50A to 800A. We study the dependence 
of quantum wire transmission properties on channel length. The transmission spectra in Fig. 1 
show that as the quantum wire channel length increases, the number of transmission resonances 
increases, corresponding to an increasing number of modes in the wire. Note that in all the spectra 
shown, transmission coefficient tends to be quite small for electron energy below w 0.3 eV. In Fig. 2 
we plot the same set of transmission spectra on a semilogarithmic scale to reveal the sub-threshold 
behavior. We see that there is a cutoff energy (analogues to cutoff frequency in metallic waveguides 
for electromagnetic waves), and that the cutoff becomes sharper as the channel length increases. 
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Fig. 1. Transmission coefficients for a set of quan­
tum wire structures with various channel lengths. 
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Fig. 2. Transmission coefficients for structures 
similar to those in Fig. 1, shown in semilog scale. 

2. Alloy Clustering Effects in Single Barrier Tunnel Structures 

We next consider tunneling characteristics of single barrier GaAs/Alo.sGacsAs structures of varying 
thickness. It can be demonstrated that for totally random alloy configurations, the virtual crystal 
approximation yields transmission characteristics which are in agreement with supercell calculation 
results. However, if we allow the AlAs sites (equivalently, the GaAs sites) in the barrier to cluster 
then tunneling characteristics can change significantly. Fig. 3 shows the transmission spectra for 
50A, 100A, and 200A thick barriers, with cluster size (average in-plane cluster "diameter") of A = 
65A. Note that the spectra show typical single barrier tunneling characteristics below a threshold 
energy (w 0.18 eV). Above the threshold, the even thick barriers becomes somewhat transparent. 
The threshold energy decreases as cluster size increase, as depicted in Fig. 4. The above-threshold 
behavior can be explained in terms of short wavelength electrons penetrating through the barrier 
via channels formed by GaAs clusters. The transport mechanism is analogous to that in finite 



length quantum wires; a comparison between Fig. 3 and Figs. 1 &; 2 shows qualitative similarities. 
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Fig. 3. Transmission coefficients a set of single al­
loy barrier tunnel structures with different barrier 
thickness. 
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Fig. 4. Transmission coefficients for a set of sin­
gle alloy barrier tunnel structures with varying de­
grees of clustering. 

3. Quantum Dot Arrays 

In the final example we study transmission properties of quantum dot arrays, which consist of 
(40 A)3 dots arranged in a 2D square lattice, embedded between a pair of 20 A barrier layers. 
We consider the following three cases as illustrated in Fig. 5 : (1) isolated dots, where the dots 
are separated laterally by 40 A barriers, (2) interacting dots, where the interdot barriers are 10 
A wide, and, for comparison, (3) the limiting case of zero interdot separation, which is simply a 
double barrier structure. Transmission spectra for these structures with various values of lateral 
incoming plane wave momentum are shown in Fig. 6. While all the spectra show resonances 
corresponding to the quantized levels in the quantum dots (quantum well), they differ significantly 
in their ky dependence. The double barrier structure shows ky dispersion similar to bulk GaAs, as 
expected. The array of isolated dots shows no ky dispersion, due to OD quantum confinement. The 
array of interacting dots can be considered as a 2D solid composed of interacting artificial atoms, 
forming its own band structure differing significantly from that of bulk GaAs. This is quite evident 
in Fig. 6. We note in particular that the splitting of the n = 2 peak due to the interaction of p-like 
bands. 
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Fig. 5. Illustrations of closely-spaced and isolated 
quantum dot arrays. A double barrier structure is 
included for comparison. 

IV. S U M M A R Y 
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Fig 6 Transmission coefficients a structures illus­
trated in Fig. 5. 

We examine transport through single barrier tunnel structures with alloy cluster!™ „„H „ u , •. 
to transport through quantum wires. This demonstrates that structural i m p e r f S s T^noZw 
produce additional scattering processes in a perturbative sense, but also alter „ „ „ T j , ! • 
states, leading to substantially modified transport properties. We 1 ^ £ £ £ £ £ S = 

issxzxr" properties are strong,y bwced * «*— -onrctTsZd 
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