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ABSTRACT 

We describe a semiconductor device modeling program based on hydrodynamic balance equations. 
This program is is capable of treating multiple carriers in compositionally nonuniform (such as 
heterostructures) and spatially inhomogeneous device structures, as well as high electric field and 
associated nonlinear effects. Unlike other balance equation based approaches to device modeling, 
where the various relaxation rates are treated phenomenologically, or imported from Monte Carlo 
calculations, our approach is self-contained in that these rates are calculated within the simulation 
program. The momentum and energy relaxation rates are cast in the form of electric field dependent 
frictional force and energy transfer functions, with full account of carrier-carrier interaction effects, 
such as dynamical screening/descreening. These effects are embodied in the dielectric function of 
the system, which is treated within the random-phase approximation here but can also include 
exchange-correlation effects. Another advantage of our balance equation approach is that arbitrary 
energy band structures can be treated, making it suitable for high-field and microwave applica­
tions. The simplicity of our technique permit fast and efficient modeling of device performance 
characteristics, requiring only a fraction of the CPU time needed for Monte Carlo simulations. We 
have tested the modeling program on simple devices such as an n+-n-n+ diode and have obtained 
good agreement with Monte Carlo simulations. 

I. INTRODUCTION 
An increasingly popular approach in device modeling is the hydrodynamic balance equation 

technique, which solves the first few moments of the Boltzmann equation. But the moments 
equations by themselves do not form a closed set of equations, requiring input of momentum 
and energy relaxation rates from outside the system. These relaxation rates are supplied from 
experimental measurements, or from Monte Carlo calculations, and sometimes they are simply 
taken to be constants. A third way of circumventing this difficulty is to postulate the distribution 
function with unknown parameters, and use balance equations to solve for these parameters. 

Recently, a new balance-equation method for high-field transport in uniform system has been 
developed1. This has subsequently been generalized to weakly nonuniform systems2. In addition 
to the simplicity and transparency of its mathematical structure, the advantages of this method 
also include its generality of description of nonlinear transport in the presence of an electric field 
of arbitrary strength, and its ease of treating dynamic, nonlocal carrier-carrier scattering. All 
the important transport properties are expressed in terms of the carrier density-density correla­
tion function which includes full carrier-carrier interaction within the random-phase approximation 
(RPA) or beyond. 

In this presentation we will describe our balance equation based device modeling, giving partic­
ular attention to points of departure from other, more conventional balance equation based device 
modeling programs. 
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II. B A L A N C E EQUATIONS 
Within the balance equation approach the following balance equations are used to describe the 

carrier transport. These are, the equation of continuity, 

at 

the force/momentum balance equation, 

•£ + V • (nv) = 0, (1) 

dv „ , - _ 2Vu e - 1 -. 
— + v(V-v) = - - + -E+ / , (2) 
ot 3 mn m mn K ' 

and the energy balance equation 

— = vVu = --u(V -v)~w-v-f, (3) 

along with the Poisson equation 

V24>=--[n(R)-ND). (4) 

These are supplemented by the expression of the average local kinetic energy density of the carrier 

u{R) = 2 £ ££ /0[(€ j - it(R))/kBTe(R)), (5) 
k 

and that of the local chemical potential n(R) which is related to the local electron density n(R) 
via the relation 

n(R) = 2 J2 M(H ~ KR))/kBTe(R)], (6) 
if 

where eg = h2k?/2m and /o is the Fermi-Direc function. 
The resistive force and the energy loss rate are 

f = » / £ N ? ) l 2 £ l I » ( £ « o ) 

+2pM(g,X)mM»o + % A ) [N ( ^ | ) - N ( ^ + ^ ) | , (7) 

w = 2X:|M(9-,A)|2nrAn2(g,a;o + %A) [N ( ^ | ) - N ( * ^ + 2»))] , ( 8 ) 

where u;0 = q- v(R), N(x) is the Bose-Einstein factor, n/ is impurity density, fi^A is the phonon 
frequency of wave vector ^and branch index A, u(q) is the electron-impurity interaction potential 
M(q,X) is the electron-phonon coupling matrix element, U2(q,u) is the density-density correlation 
function of electrons which can be obtained within the RPA or beyond. Note that /"and w depend 
on the position vector R through the quantities n(R), Te(R), and v(R). 

These equations will uniquely determine v(R), Te(R), u(R), n(R), }i(R), and 4>(R), for given 
initial and boundary conditions. All these variables may be time dependent for transient or ac 
transport processes. Following standard procedures3,4, these differential equations are turned into 
difference equations on a space-time grid. The resulting simultaneous nonlinear difference equations 
are solved using the Newton method4. 
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I I I . A N E X A M P L E — M O D E L I N G OF AN n+-n-n+ D I O D E 
The process of device simulation developed here is applied to the simulation of a one-dimensional 

problem, an n+ — n — n+ Si diode. This is a symmetric, 0.55 fim structure, with the middle 0.25 fim 
doped to Np = 1015 cm~3, and the anode and cathode (each is 0.15 fim long) doped to 5 x 1017 cm~3. 
There is some smooth grading in doping density at the junctions between the electrodes and the 
middle, low doping region. 
* We carry out our modeling for a lattice temperature T = 300 K. In addition to ionized impu­
rity scattering, we include nonpolar optical phonon scattering and deformation potential acoustic 
phonon scattering. All materials parameters are those of single crystal Si. 

For a bias voltage of 0.5 V we have calculated the steady-state carrier density, drift velocity, 
energy, and electrostatic potential, all as functions of position along the device length. These are 
depicted in Figure 1. In addition, we also present the calculated resistive force and energy-loss rate 
in Figure 2. 

In summary, we have developed a semiconductor device modeling program, based on hydro-
dynamic balance equation approach to charge transport. Instead of the usual relaxation rates 
employed in traditional balance equation based modeling, our method relies on a resistive force 
function and an energy-loss rate function, which are calculated within the program. 
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Figure 1: Electron density, drift velocity, energy, and electrostatic potential as functions of position 
for a bias of 0.5 V. 
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Figure 2: Resistive force and energy-loss rate as functions of position for a bias of 0.5 V. 
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