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1. INTRODUCTION 
In this paper we present a solution method for the Boltzmann transport equation based on a series expansion 
in a variable coordinate system. In an appropriately scaled form, the Boltzmann transport equation is given 
by 

e2dtf + edivx(v(k)f) + edivk(Ff) = Qf, (1) 

Equation (1) is already given in a scaled and dimensionless form where the dimensionless parameter e stands 
for the scaled mean free path. The term Qf on the right hand side of equation (1) denotes the collision 
operator. For the purpose of this paper we restrict ourselves to the collision operator resulting from the 
relaxation time approximation. This means, that the operator Q in (1) is given by 

Qf(x, k, t) = a(p, u, t)M(x, k) - b(p, u, T)f, (2) 

where M(x, k) is a given equilibrium distribution and a and b are functions of the density p , the group 
velocity u, and the scaled temperature T , given by 

p(x,t)= [ f(x, k, t)dk, pu(x, t) = / v(k)f(x, k, t)dk, p(ZT + |u|2) = / \v\2f(x, k,t)dk. 
JR> Jit* JR* 

(3) 

The hydrodynamic model equations are usually obtained by by integrating equation (1) against the functions 
l,u(fc) and |u(fc)|2, assuming either a parabolic band structure or making an effective mass approximation, 
and assuming that the density function / has the shape of a drifted Maxwellian in the wave vector direction. 

/ ( l ,M) = ^ p p h z ^ i P , (4) 

For elastic scattering terms, which preserve momentum and energy, the hydrodynamic model can be justified 
via asymptotic analysis for small values of the scaled mean free path, the quotient of the mean free path and 
the length scale under consideration [BAR]. For inelastic collision processes, which are usually present for 
electron transport in solids, a similar asymptotic analysis exists, leading to slightly different model equations 
[POU]. However, the hydrodynamic model is frequently used in regimes where the scaled mean free path is 
actually quite large. An alternative approach is to expand the solution of the Boltzmann transport equation 
in a set of basis functions in velocity space (c.f. spherical harmonics) with coefficients which are dependent on 
position and time. After using a Galerkin approximation a set of macroscopic equations is obtained for these 
coefficients [VEN], [LIN]. However, the resulting expansion converges quite slowly in the presence of high 
velocities and strong forces. In this paper we present a series expansion method, also based on a Galerkin 
procedure which is better suited for high field regimes and a relatively large mean free path. The basic idea 
is to use a coordinate transformation in phase space which adapts locally to the shape of the distribution 
function / . This transformation is chosen such that the resulting expansion reduces to the hydrodynamic 
model if only a few terms are used. 

2 . GALERKIN APPROXIMATION 
The method presented in this paper is a Galerkin approximation of the Boltzmann transport equation (1) in 
a weighted I? space, using a variable transformation in the velocity variable which is dependent on position 
and time. We employ the coordinate transformation k—* w, given in general by 

w = G(x,k,t) (5) 

and expand the solution of the Boltzmann transport equation as 
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fix, k,t)^Y^ f(x, n, t)rl>n (x,k,t), (6) 
neN 

where the basis functions i>n are given by some suitable set of basis functions (f>„ under the variable trans
formation G, which will be chosen such as to adapt locally to the shape of the distribution function / . 

tl>n(x,k,t) = 4>n(w) , w = G(x,k,t) (7) 

holds. N in (6) denotes some suitable, finite index set. We introduce the weighted L2 inner product for two 
scalar functions f(x,k,t) and g(x,k,t) and two vector valued functions f(x,k,t) and g(x,k,t) by 

<f,9> (*. *) = / M(G(x, k, t))f{x, k, t)g(x, k, t)dk, < f, g > (x, t) = f pfedk. (8) 

The variable transformation G is assumed to be affine and the basis functions <f>„ are assumed to be normal
ized. So 

/ s n(w)<l>tt(w)<l>m(w)dw = 5m>n (9) 

holds. Taking the inner product < .,. > of the Boltzmann transport equation with the test function ipm meN 
yields the macroscopic equations for the coefficients f(x, n, t). Inserting the expansion (6) into the Boltzmann 
transport equation (1), taking the scalar product with the basis function ' ^ m , gives 

3 

•E>m,nfn — Cm, (10) 
j=l ncN neN 

where the tensors A, B and C are given by 

(a) Ai,m,n(x,t)=<i)m,Vjit>n>% (b) Cm(x,t)=a<j)m,M>-bfm (11) 

-Bm,„(x, t) = < -i>n, dt(ni>m) + v Vx{ni>m) + F • V e 0 # m ) > . 

To this point the equations (10) represent a Galerkin approximation of the Boltzmann transport equation 
in a variable coordinate system, which will be convergent, provided the equations (10) are stable and the 
derivatives of the density function / stay bounded in the weighted I? space with the weight fi. We make the 
following choices for the basis functions ipm and $ m and the weight function /i, which lead to a generalization 
of the hydrodynamic model equations. We set 

(a) fi(w) = exp(\w\2), (b) $m(w) = exp(-\wf)Pm(w), c) ipm(x,k,t) = <i>m(G(x,k,t), meN (12) 

where the Pm are chosen as suitably orthogonalized polynomial functions. Furthermore, we choose the affine 
transformation G such that 

K ^ l " 1 ^ (.3) 

holds for some vector p and some scalar a. The basic idea behind these choices is that, because of (12) 
taking the scalar product of a given function with the basis function i>m corresponds to computing a certain 
linear combination of the moments of that function, and, because of (13), the zero order basis functions will 
have the shape of the drifted Maxwellian (4). This results in the hydrodynamic model being a special case 
of the above approximation procedure. 

To this point we have not specified the choice of the functions a(x,t) and p(x,t) , which make up the 
variable transformation in velocity space. Indeed, any choice of a(x,t) and p(x, t) would yield a convergent 
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Galerkin method for the Boltzmann transport equation, provided the density function f(x, k, t) is sufficiently 
smooth. We now choose p and a dependent on the solution itself in order to minimize the number of terms 
needed in the expansion procedure. We choose p(x, t) as the mean velocity u given by the solution of the 
Galerkin approximation. So we set 

p(x,t) = —l— [ vf(x,k,t)dk . (14) 
p(x, t) Jj^ 

The function a is chosen such that it matches the macroscopic temperature T in (3). So we set 

a(x,t) = ^J-^-^J^\v\2f(x,k,t)dk-\p\2 with p(x,t) = Jj(x,k,t)dk. (15) 

Of course, this choice of a and p transforms the linear problem (10) into a nonlinear one. 

The hyperbolic system (10) can be discretized by any method suitable for systems of hyperbolic con
servation laws. For the purpose of this paper the method of choice is the Lax - Wendroff scheme. 

3 . A N U M E R I C A L T E S T E X A M P L E 
To demonstrate the effect of the corrections to the hydrodynamic model resulting from the above approxi
mation procedure, we present a one dimensional example of the reflection of an electron wave at a potential 
barrier. Assuming a parabolic band structure, the density function / (x , k, t) remains cylindrically symmetric 
around the k\— direction in the one dimensional case. So 

/ ( s , M ) = / ( * i , fci,fcf + fci,t) (16) 

holds. The affine variable transformation G in (5) is given by 

G ( s , M ) = * ; g y ) e , e = ( l , 0 ,0 ) r , (17) 

and the polynomial basis functions Pm in (12) are given by the standard Laguerre polynomials. Calculations 
were performed for the scaled mean free path e in (1) equal to 0.2, which corresponds to the regime where the 
hydrodynamic model is usually applied. Figure 1 shows the force F corresponding to the potential barrier. 
Figure 2 shows the currents at a given point in time resulting from three different calculations. The solid 
line has been obtained by using 10 terms in the expansion, 5 in the k\— direction times 2 in the orthogonal 
k\ + k\— direction. The dotted line gives the current resulting from the corresponding hydrodynamic model, 
using only three terms in the expansion. Finally, the the dashed line represents the 'numerically exact' 
solution, obtained by using 32 times 8 modes. As observed in the past, the hydrodynamic solution exhibits 
artificial velocity overshoot phenomena. These phenomena are not present when 10 terms are used, and the 
current is essentially compute correctly. Figure 3 shows the I? norm of various modes as a function of time. 
It can be seen that the higher order modes produce a significant correction. In particular, a simple algebraic 
calculation shows that the (1,0) term is responsible for non - scalar temperatures. Finally, Figure 4 shows 
a snapshot of the distribution function / at the midpoint x •= 0.5 and a certain point in time as a function 
of k\ and k\ + &f. If the assumptions underlying the hydrodynamic model were correct, the distribution 
function would have to be a Maxwellian, shifted along the ki— direction. The additional peak in the exact 
distribution function is responsible for the artificial velocity overshoot in the hydrodynamic model. 

*) supported by ARPA Grant No. F49620-93-1-0062 
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FIGURE 3 
Expansion Coefficients 
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FIGURE 2 
Currents at t=0.02 
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FIGURE 4 
Distribution f for x~ 0.5 and t -0.02 
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