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Abst rac t 

Dual energy transport (DUET) model in semiconductor devices including heterostruc-
tures has been developed to simulate the distribution of carrier and lattice temperatures 
in addition to profiles of the electrostatic potential and carrier concentrations. The 
modeling approach is in consistency with the conventional drift-diffusion (DD) model, 
making it easy to implement in the existing code. Carrier energy dependent mobility 
and impact ionization models have been examined and are used for simulation of vari­
ous velocity overshoot and hot electron effects. Two simulation examples, one for the 
submicron MOSFET and another for the deep-submicron SOI, are presented through 
comparison with measurement data to demonstrate the improvement of the new model 
over DD model in predicting the device characteristics for modern (submicron) struc­
tures. 

I INTRODUCTION 

As the feature size of semiconductor devices shrinks to the quarter-micron regime, nonlocal ef­
fects such as hot electrons and velocity overshoot become important in determining the device 
characteristics. The conventional drift-diffusion transport model has been and continuously been 
used in industry and academia for design and analysis of IC devices largely because its auxiliary 
physical models such as the field-dependent mobility model and impact ionization model are well 
calibrated. But it fails to predict those device characteristics which becomes critical in sub- and 
deep sub-micron devices. A notable example is the substrate current in MOSFET. Neither can DD 
model provide such vital information as to the average kinetic energy of carriers in the device. On 
the other hand, Monte Carlo (MC) method can provide very detailed information about the carrier 
distribution in real and momentum spaces. But in addition to the excessive CPU time requirement 
and complexity of model parameters, most present MC codes can only simulate one-carrier device 
behavior, thus are not yet suitable for the design of practical devices. Through tracing back to the 
origin of DD model from Boltzmann Transport Equation (BTE) and by relieving the constraints of 
constant effective mass and temperature, we were able to develop a more complete transport model 
in semiconductors, which reveals not only the carrier concentration and current density (essentially 
a measure of carrier average velocity) but also the carrier energy density. Assuming Fermi-Dirac 
(FD) statistics as the basis for the distribution function and applying the perturbation theory, the 
average kinetic energy can be linked to the temperature parameter used in FD statistics in the 
same formulation as for an ideal gas in classical thermodynamics, thus correctly identifying the 
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concept of carrier temperature. Moreover, the lattice temperature can easily be incorporated in 
the model by considering the energy exchange among the carrier subsystems and lattice. We thus 
proposed a dual (carrier and lattice) energy transport model (DUET) for semiconductor devices, 
and have successfully implemented the model in Stanford's device simulation code, PISCES, as ver­
sion 2ET. Since the code was up to work we have conducted several tests and results obtained from 
the simulation are encouraging. Recently, we also extend the capabilities of the code to cover the 
electrical simulation of heterostructures such as light emitter diodes (LEDs) and surface emitting 
diodes (SELs). 

In the following we first introduce the complete formulation of the DUET model, and describe 
the energy dependent physical models as implemented in PISCES-2ET code. Finally, examples are 
given and future work is discussed. 

I I DUET MODEL FORMULATION 

DUET model uses six state variables - potential (^), electron and hole concentrations and temper­
atures (n, p, Tn , and Tp), and lattice temperature (TL) to describe the status of a semiconductor 
device. All governing equations for these variables are derived from the conservation or balance 
principle for matter and energy. Except of the Poisson's equation for ip, this conservation principle 
can be expressed in the following equation using Fick's second law: 

£ = -V.F + , - , (!) 

where u represents the concerned physical quantity, F is the flux of «, and g and r are generation 
and recombination rates of «, respectively. The key issue in the modeling is thus to find expressions 
for F , g, and r in terms of u. It is well known that in DD model, the carrier flux consists of the 
diffusion and drift terms, or by introducing the quasi-Fermi level EF, is proportional to the gradient 
of Ep. The fundamentals behind the DD model lie actually in BTE, which itself is a representation 
of the continuity principle, 

>•"•"=KL (2) 

where k is the wavenumber vector, and the way of constructing the distribution function of / . 
Following Stratton's approach [1], in the existence of the electric field by applying the perturbation 
theory and relaxation time approximation (RTA) the distribution function at any instant can be 
expressed as 

/(r,k) = M ^ - T ( r , 4 ( k - V , / o - ^ - k ) (3) 

where E is the carrier energy and e is the kinetic part of £ , fo is the even part of / in k—space and 
is dependent on the carrier kinetic energy only. The relaxation time r is assumed to depend on c 
only too. £ is the electric field. All other symbols have conventional meanings. If /o is taken as 
the Fermi-Dirac distribution function, one can readily obtain the expression for the carrier density 
and flux by definition as follows: 

j n = nfinVEFn + qnfinQnVTn (5) 

where Nc is the effective density for the conduction band and Ec is the energy level for the 
conduction band edge, Fx/2

 1S t f l e Fermi integral of order one half. Coefficients fin and Qn in 
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Eq. (5) are electron mobility and thermopower, respectively, and are related to each other. It is 
obvious that when Tn is constant the above expression for the current is reduced to the conventional 
DD model. 

To find the governing equation for carrier temperature, we start from the balance equation for 
the kinetic energy. For electrons, we have 

~Qf~ ~ " - S n + J n " i n - M u m (6) 

where wn is the electron kinetic energy density, s n is the energy flux, and uwn is the net energy loss 
rate. The Joule heat term of j n • £n represents the conversion from the potential to kinetic energy 
and the subscript n in £n indicates the fact that for heterostructures, the electric field might be 
different for electrons and holes. Again using Eq. (3) and by definition w„ and s n are computed as 
follows: 

3 
Wn = ^nkBTnjn (7) 

Sn = -PnTnjn - KnVTn (8) 

where 7„ is the degeneracy factor which equals unity when Boltzmann statistics is used, Pn and 
Kn are thermoelectric power and thermal conductivity for electrons, respectively. Prom Eq. (7) 
and taking j n = 1, we can identify that Tn indeed has the meaning of temperature for a classical 
electron gas. 

The remaining task in completing the model formulation is to find the carrier and its energy 
exchange among sub-systems. For carrier exchange, i.e., recombination and generation, we include 
the Shockley-Read-Hall (SRH), Auger, and radiative recombinations, and impact ionization. All 
these carrier exchanges are accompanied by the energy exchange. In addition, we also include 
the energy exchange between carriers and lattice through phonon scattering modeled using energy 
relaxation times, Twn and Twp. 

We thus arrive at the following set of equations: 
Poisson's equation 

V • (-cVtf) = q(p - n + JNT+ - NJ) (9) 

Carrier continuity equations: 

dn 1 „ . 

Tt = f'^~u (10) 
dp 1 _ . 
Tt = -gV-*P-U (11) 

Energy balance equations for carriers 

dwn 

8i 
— * • s n + j n • tn — uwn 

^ = - V - s + i •£ -u 
fa — v =>p T Jp Cv Uwp 

where 

3 
Uwn = (tisrh + Urad)-zkBTn - (un, Auger ~ 5n,tmp) Eg{TL) + lkBTp 

3 . _, , Wn(Tn) - Wn(TL) 
-9p,imp^Bln + (!2) 
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UWp — (,Usr^ + Ura(l) KB-Lp {.Up, Auger 9p,imp) 

a h T 4- ^ ^ P ) ~ WP(TL) 
~9n,impCyhBJ-p "1 ~ 

Eg(TL) + -kBTn 

(13) 
i-wp 

Thermal diffusion equation for lattice: 

CL- dt 
= V • (KLVTL) + usrh hBTn + Eg(TL) +^kBTp 

wn(Tn) - wn(TL) | wp(Tp) - wp(TL) 
(14) 

i tup 

In the transport expressions for the current density and energy flux, there are four coefficients, 
fj,,Q,P, and K, and they are all related to each other through the relaxation time, r . This is one of 
the advantages of the DUET model. Once one of them is known, the others can be deduced from the 
known parameter. In reality, however, these coefficients can be treated as empirical parameters or 
obtained from experiment. For example, knowing the dependence of fi on the carrier temperature, 
thermapower Q can be obtained for electrons: 

Qn = 
kB 
qn 

1+ Tn—In Hn(r,Tn) (15) 

Finally, we list the energy dependent mobility and impact ionization models as used in PISCES-
2ET: 

«»-™*™ - i + T(^S(rl^)] <16> 
where the subscript c for n or p, and 7 ( J V , T L , £ X ) = Mo(iV,lL,Ex)/[qTwv^at(Ti)] [2]. And the 
impact ionization rate, a, 

a = Aexp[-(b/£effr] with £eff = lt?.I^lk 
l q TwVsat 

(17) 

I I I SIMULATION EXAMPLES 

We present two examples which show that the DD model is no longer accurate in predicting I — V 
characteristics for submicron devices when the non-stationary phenomena such as the velocity 
overshoot and nonlocal field dependence of physical parameters such as the impact ionization rate 
become important. While both DD and DUET models provide good simulation results compared 
to the measurement for devices with relatively long channel length, DD model starts to break for 
output characteristics of SOI at Xe// = 0.12/xm (Fig. 1) and substrate current of MOSFET at 
Le-fj = 0.8 /im (Fig. 2). On the other hand DUET can consistently model the device characteristics 
well even when the device size is scaled down to the deep submicron range. 

IV CONCLUSION 

DUET model follows the same moment approach as DD model does but has two obvious advantages. 
Firstly, it closes the system in a more consistent way and resolves the conflict intrinsic to DD model, 
i.e., the field dependent mobility model as commonly used in device simulators employing DD model 
vs. the constant temperature assumption leading to the DD current expression. Secondly, it is able 
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Figure 1: Simulation results for the substrate current in MOSFET with two different channel 
length (2 and 0.8 fim) and the comparison is made for 0.8 fim. case between the ET-simulated and 
measured results (from MIT and UC Berkeley, respectively). The upper curves are simulated using 
DD model while the lower curves are obtained from ET simulation. 
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Figure 2: Simulated and measured data for SOI structure with different channel length. 

to provide information regarding the carrier kinetic energy. However, there is still a need to carefully 
calibrate the transport coefficients and to develop more reliable energy-dependent physical models. 
Especially for the impact ionization and breakdown simulation, since these phenomena are basically 
determined by the high energy tail of the carrier distribution, the dependency on the average energy 
has to be elaborated and verified through experiments. 
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