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Abstract 

This paper presents a method for solving the 3-D hydrodynamic (HD) model in submicron 
semiconductor devices. The main features of this method aTe the fairly low memory and CPU 
time requirements, and excellent convergent property. Simulation results of a 3-D submicron 
MOSFET are provided. 

I . In t roduct ion 

As device dimensions continue to shrink, 3-D-related phenomena, including the MOS bird's 
beak and narrow channels effects, can significantly impact device characteristics. As a result, 
demand for 3-D simulations has appeared[1,2]. As far as we know, very few robust 3-D device 
simulators exist, and we know of none which are based on the hydrodynamic model. In general, 
the HD model is difficult to solve because it is a highly nonlinear, singularly perturbed, highly 
coupled system of partial differential equations. While these difficulties are readily evident in 
2-D, they are compounded when 3-D simulations are attempted. In addition to the standard 
obstacles of traditional 2-D simulations, the increased difficulties for 3-D simulation can be 
summarized as follows: (1) Memory: 3-D simulation of electrons and holes requires the solution 
of between 105 and 106 simultaneous discrete equations. Use of the standard Newton's method 
requires storing extremely large matrices to accomodate this large number of discrete equations. 
(2) Algorithm: Solving such large matrices is very difficult and readily leads to round-off errors 
and instabilities. (3) Boundary conditions in 3-D are more complicated than their 2-D coun­
terparts, which leads to changes in the matrix structure and more difficulties when nonplanar 
surfaces are encountered. (4) Convergence and stability: More complicated coupling relations 
between mesh points and between equations significantly increase the nonlinearities already 
associated with the HD model. 

We have overcome numerical problems associated with 3-D HD modeling, and developed 
an efficient 3-D HD simulator for predicting deep-submicron MOSFET performance. Instead 
of using solution techniques, such as Newton's method or the conjugate gradient approach, we 
adapt our solution approach specifically for 3-D HD device simulation. This required extending 
our highly stable and routinely convergent method for 2-D HD modeling to 3-D[3,4], 

To tailor our approach specifically for the 3-D problem, we use a fixed point iterative ap­
proach which totally avoids solving large matrices. By defining new Slotboom-like variables 
for the HD model, we transform the original HD equations to self-adjoint form which guaran­
tees that each discretized HD equation will correspond to a diagonally dominant matrix. A 
Scharfetter-Gummel-like (S-G) discretization is then performed on the self-adjoint forms of the 
current-continuity and energy balance equations. The S-G-like schemes resolve rapid variations 
of unknown variables, not only due to the mesh refinement, but due to the special design of the 
finite difference schemes as well, thereby helping to reduce the number of mesh-points, equa­
tions, and time to convergence. The coupled system is solved using SOR-type methods where 
the equation for each mesh point is updated explicitly. The explicit method obviates the need 

70 



to solve large matrices, and, due to the diagonal dominance, each HD equation is guaranteed 
to converge[5,6]. The explicit method is independent of matrix structure so implementing ad­
ditional 3-D related boundary conditions do not noticeably affect the solution. Furthermore, 
memory requirements of the fixed-point iteration method are fairly low, thereby facilitating 
solution in 3-D. Finally, the explicit method is intrinsically parallel. 

II. Solution of 3-D HD Equations 

The Self-Adjoint form of the HD model 
To solve the HD model in 3-D, we begin with the standard HD equations[7]. By using 

the Slotboom-like variables variables u,v,gn,gp for the standard HD variables n,p,Tn,Tp, the 
electron current density and electron energy flux can be expressed in the compact form: 
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By substituting above expressions into the original HD equations, one can transform the HD 
model into self-adjoint form: 
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It is clear from the above expressions that the Poisson, the current-continuity, and the energy-
balance equations are each self-adjoint differential equations with respect to the variables <£, u 
and gn. 

Iterative Method for HD Equations 
We use an S-G-type method to discretize the current-continuity and energy-balance equa­

tions. This S-G approach helps to analytically resolve the rapid variations in n and Tn, thereby 
reducing the number of mesh-points which can become quite large for 3-D applications. With 
the S-G-like discretization, we assume that Sn and Jn are constant between mesh-points. In­
tegration of the above self-adjoint forms between the mesh-points is then readily performed. 
The overall variation of S„ and Jn is then accounted for discretely on the mesh-points. This 
discretization yields the following 3-D general expression for the current-continuity and energy-
balance equations: 
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+Ci,j-l,kHij-ilk + Cijtk+lffi,j,k+l + ci,j,k-lHi,j,k-l 
-(ci+i,j,k + Ci-i,j,k + Cij+i,k + Cij-!,k + citj,k+i + Ci,jtk-i + Litjtk))Hi,j,k = -li,j,k (7) 

In the above equation Hij,k represents the discrete form of the Slotboom variable either u or gn. 
The c's are the discretization coefficients corresponding to each HD equation. Lijj, represents 
the diagonal term arising from the RHS of the self-adjoint equations, while fij,k represents the 
'constant' term on the RHS of eqns.(5) and (6). It is interesting to note that the discretization 
of the self-adjoint forms yields coefficient matrices which are diagonally dominant. This can be 
observed since all the coefficients c,-,.^, as well as Li^k, have the following property: 

c«+ij,* > 0, c,-_ij,* > 0, Cij+ijt > 0, c^- i ,* > 0, Ci,j,k+i > 0, Ci,j,k-i > 0, Lijfk > 0. 
(8) 

Eqn.(7) represents a system of N = (N{XNjXNk), where N{, Nj,Nk represent the number of 
meshpoints in each dimension, respectively. Ordinarily, such a system would be solved implicitly 
using a Newton-type approach. However, such an approach would yield extremely large matrix 
equations which have extensive memory requirements and are susceptable to round-off error. 

Our approach, which has been specially tailored for hydrodynamic 3-D applications, allows 
for eqn.(7) to be solved explicitly, thereby avoiding large matrices entirely. We solve eqn.(7) for 
Hi,j,ki a fixed-point method, such as Jacobi iteration technique, is then applied to update the 
HD-Slotboom variable at each mesh-point using the following equation: 

rj(n+l) _ AiJ,k Z 'h3'k fa\ 
ai,3,k - B. . . + / , . .. W 

•°t,],k T lJi,j,k 

where A\ -k represents the sum of the off-diagonal 'cff' terms in eqn.(7), and B%tj%k represents 
the sum of the V coefficients of the diagonal term Hijtk-

This iteration scheme minimizes memory allocation, requiring only a few vectors of length 
N. Furthermore, due to the property of diagonal dominance, the convergence for the solution 
of each HD equation is guaranteed [4,5], while the convergence of the overall system is obtained 
with a modified Gummel method. Finally, by observing the decoupled algorthm of eqn.(9), it 
is clear that the method is readily parallelized. 

I I I . Numer ica l Resul ts 

To examine the new method, we simulated a semi-recessed, 3-D submicron MOSFET, as 
shown in Fig. 1. The MOSFET has 0.5/zm of channel length and 0.5/xm of channel width. The 
electron temperature distribution at Vds = l.OF and Vgs = 3.5T is shown in Fig.2. Narrow 
channel effects can be observed. 
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Fig.l. Semi-recessed MOSFET device with 0.5/xm effective channel length and 0.5/j,m chan­
nel width. 
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Fig.2. Electron temperature for the device with VdTain = 1«0V and V<,a(e = 3.5V. (We have 
enlarged the channel region to show the 3-D effect). 
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