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Abst rac t 

We present here a consistent approach for determining impact ionization coefficients for a multi-
band model in silicon. Using first-order perturbation theory and a random-A approximation, the 
impact ionization rate is determined to reflect the multi-band density of states in silicon. To account 
for the actual density of states, we have solved four coupled Boltzmann transport equations by 
combining a generalized Legendre polynomial expansion method with numerical techniques using 
finite differences and sparse matrices. Calculated values for the impact ionization coefficients agree 
very well with experiment for electrons in silicon, while being obtained in significantly less CPU 
time than required by analogous Monte Carlo calculations. 

I. INTRODUCTION: 

Fundamental analytical work on impact ionization was performed by Keldysh [1]. Since Keldysh 
presented his expression for impaction ionization rate, several analytical or quasi-analytical investi
gations of impact ionizations have been performed which use Keldysh's results [2, 3]. These inves
tigations have provided considerable insight into impact ionization, and the nature of Boltzmann 
equation in semiconductors. However, in the past, analytical formulations were usually constrained 
to an energy range which is limited to silicon's first conduction band, and therefore did not reflect 
silicon's true density of states. Furthermore, while agreement with experiment has been obtained, 
the use of Keldysh's formulation for silicon has not been fully justified since, from a theoretical 
point of view, Keldysh's expression was derived for a single parabolic conduction band, which is 
not strictly appropriate for silicon. 

In this work, we extend these quasi-analytical investigations to a larger energy range which 
reflects silicon's actual density of states. Furthermore, instead of using the Keldysh expression, 
we derive an expression for impact ionization rate which is consistent with the actual density of 
states in silicon. The expression for impact-ionization is based on the random-fc formalism, initially 
introduced by Kane [4]. Once an expression for impact ionization is obtained, we then use it, 
in conjunction with a quasi-analytical method of solving the Boltzmann transport equation, to 
calculate impact ionization coefficients. 

II. ANALYTICAL FORMULATION: 

A. Impact Ionization Rate: 

To calculate impact ionization rates which accurately reflect the density of states in silicon, we 
begin with the random-fc approximation presented by Kane [4]. With this formulation, Kane found 
that if he required energy to be conserved, but neglected conservation of crystal momentum, he 
obtained virtually the same results for impact ionization rates as when he required both energy and 
crystal momentum be conserved. In other words, Kane found that the energy dependent impact 
ionization rate could be expressed accurately in terms of the density of states. Mathematically, this 
energy-conserving, random-fc approximation gives the following expression for impact ionization: 

— ^ r = A ^2 I Pn2(£2)pn3(£3)/5n4(£4)<$(£ + e4 - e2 - s3)ds2de3de4 (1) 
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where £4,^4 refer to the energy and band containing the valence band electron; £2,^2 a n d £ 3 , ^ 
are the energies and bands of the final electron states; pni (e) is the density of states function in 
band nt-; and A is an ionization coupling constant which can be determined empirically. 

The sum over n2, nz, and 114 in equation (1) accounts for permutations of possible final energy 
bands allowed by energy conservation. The range of the summations is determined by the band 
structure and the conservation of energy. To evaluate equation (1), we take values for the density of 
states functions, pi{£i)i from the effective, multi-band silicon dispersion relation given by Brunetti 
et. al. [5]. This band structure averages the actual dispersion relation over spheres, thereby 
providing the actual density of states. By accurately providing the density of states, this averaging 
is consistent with the use of the random-fc approximation. 

After making the approximation that holes are generated mostly at the top of the valence band, 
and inserting limits consistent with the spherical band model, equation (1) becomes 
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where eg — 1.12eV is the energy gap for silicon. 

B. Impact Ionization Coefficients: 

To determine the impact ionization coefficients, we used the following expression which accounts 
for the density of states in higher bands: 

an = 

4 1 t°° 1 c\ 

i ^ i W/W"^ (4) 

where fo (s) is the isotropic distribution function in band i; p^(e) is the density of states function 
in the ith band; and vj is the silicon saturation velocity. 

Before we can calculate the impact ionization coefficients, we must first solve the Boltzmann 
transport equation (BTE) to find fo (e). 

C. Formulation of the BTE: 

To obtain /o (e), we use the Legendre polynomial (LP) expansion method for solving the BTE. 
Previously, investigators used a state of the art LP approach for impact-ionization studies which 
incorporated a first order LP expansion that accounted for one or two conduction bands in Si [6]. In 
this work, we use a generalized approach for obtaining the distribution function to arbitrarily-high 
LP order. We also include the effects of silicon's higher conduction bands. 

To solve the BTE to arbitrarily high order and for densities of states which correspond to higher 
conduction bands, we first write a steady-state, homogeneous Boltzmann equation for each of the 
four bands of the spherically averaged silicon dispersion relation [5]. We also include the effects 
of acoustic, intervalley, interband phonon scattering, and impact ionization. The equation for a 
specific band is coupled to the other equations through impact ionization and interband scattering. 

Next, with the LP approach, we expand the distribution function in each band, f®(k), in terms 
of Legendre polynomials to an arbitrarily high order: 

00 

fii)(k)=E$)(e)Pn(cos0) (5) 
n = 0 
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where 6 is the angle between k and electric field E; Pn(cos9) are the Legendre polynomial basis 

functions which provide the angular dependence of the distribution function; and /n (e) represent 
the unknown coefficients of the basis functions. 

Once the distribution function has been expressed in terms of the LP expansion, the goal is to 
find the unknown coefficients / « ( £ ) . We find the coefficients by using a variation of the generalized 
LP expansion approach [7]. With this method, LP orthogonality and recurrence relations are used 

to generate a system of equations for the unknown coefficients, /„ (e). The powerful aspect of this 

technique is that the equations for all the coefficients, fn(s), have identical forms and are thus 
automatically generated to arbitrarily high order. In addition, in order to reduce the number of 
equations required for solution, and also improve upon numerical characteristics, we substituted 
odd-indexed LP equations into even-indexed LP equations and reformulated the Boltzmann equa
tion into a system of second-order, linear, differential-difference equations. The analytical form of 
the generalized equation for even-indexed Legendre coefficients fn(s) in band i, can be written as: 
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(6) 
for n = 2 ,4 ,6 ,8 , . . . ,00 

where a n = ^ r ^ ; 7,' and 7" are the 1st and 2nd derivatives of 7,- with respect to energy; r t(£) is 
the total mean free time between collisions; and T- is the 1st derivative of r,- with respect to energy. 

A similar system of equations is obtained for each band. To solve the system, we first truncate 
the expansion. Then, the entire system is discretized and then solved directly using Gaussian 
elimination for sparse matrices. 

II I . RESULTS: 

In Fig. 1 we show the distribution function we obtained from solving the multi-band BTE. The 
solid line shows calculated values for the symmetrical part of the distribution function when 20 LP 
terms were used, while the dotted line shows the results of using only 2 LP terms; the diamonds 
give the results of Monte Carlo calculations which used the same Brunetti transport model. Solving 
the BTE to 20'th LP order required approximately 28 CPU seconds on a SUN4 workstation, while 
comparable Monte Carlo calculations took considerably longer. 

Using the above method, we were able to obtain values for ionization coefficients with the use 
of only one unknown adjustable parameter, the ionization coupling factor A. The value of A has 
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been determined to be 45000 when an expansion of 20 LP terms was employed; and 55000 when 
only 2 LP terms were used. Fig. 2 demonstrates the agreement between the values obtained from 
our calculations and the experimental data of Lee et. al. [8] for impact ionization coefficients. 

IV. CONCLUSION: 

We have developed an efficient and physics-based method in obtaining impact ionization co
efficients for the multi-band model in silicon. The impact ionization rate is derived from basic 
principles with a suitable random-fc approximation for the multi-band model considered. A gen
eralized Legendre polynomial expansion method is combined with numerical techniques to solve 
the system of four coupled multi-band Boltzmann equations. Excellent agreement has been ob
tained between our calculations and the results of both Monte Carlo method and experiment. 
The efficiency of this method makes it well suited for studying impact ionization and hot-electron 
phenomena in semiconductor devices. 
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Fig. 1. The isotropic distribution function f0 

plotted for different electric fields are com
pared with results of MC calculations. 
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Fig. 2. Impact ionization coefficient is plotted 
versus the reciprocal electric field and com
pared with experimental values. 
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