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Abstract 
We present two original methods which yield the small-signal response around the d.c. bias 

in bulk semiconductors, using direct numerical resolutions of the perturbed Boltzmann equation. 
The first method operates in the frequency domain. An a.c. sinusoidal electric field perturbation 
superimposed to the d.c. field produces an a.c. perturbation of the distribution function which 
is computed at each frequency. The second method operates in the time domain. A step electric 
field perturbation is superimposed at time t=0 to the d.c. field. The resulting perturbations of the 
distribution function and of the average velocity are then computed as a function of time. These 
methods are applied to the case of holes in silicon at T=300 K under hot-carrier conditions and 
used to compute the differential-mobility spectrum. 

I. INTRODUCTION 
Small-signal response functions around the bias point are known to play a fundamental role 

in the investigation of hot-carrier transport and noise in bulk semiconductors. In the time domain 
they reflect both dynamic and relaxation processes inherent to the hot-carrier system and can be 
used for the detailed investigation of kinetic phenomena. In the frequency domain they provide 
the differential mobility spectrum which is necessary for several purposes, such as: to evaluate a 
possibility of amplification and generation, to calculate the gain or the absorption coefficients, to 
obtain the noise temperature using additionally the spectral density of velocity fluctuations, etc. 
To date the most comprehensive theoretical analysis of these phenomena is based on numerical so
lutions of the Boltzmann Equation (BE), typically by means of Monte Carlo simulations. However, 
together with evident advantages, the Monte Carlo method has also inherent shortcomings mainly 
related to the stochastic nature of the procedure: as a matter of fact, the standard Monte Carlo 
scheme meets difficulties in calculating with high accuracy quantities on a hydrodynamic time scale 
such as the small-signal kinetic coefficients. Other alternative methods deals with the steady state 
hot-carrier transport and often cannot be reformulated in terms of the time-dependent BE. In this 
communication, we present two original deterministic (as opposite to stochastic) methods which 
yield the small-signal response around the d.c. bias in bulk semiconductors, using direct numerical 
resolutions of the perturbed BE. 

II. THEORY 
The distribution function /(k, t ) of carriers in homogeneous nondegenerate semiconductors 

with a uniform external applied electric field E(t) is the solution of the time-dependent BE. In 
a constant electric field E , of magnitude Ea% / (k , t ) takes the stationary value / , (k) . If a small 
electric field SE(i) is superimposed on E4 , it produces a variation of the distribution function 
Sf(k,t) which is the solution of the perturbed BE in time domain [1]: 

|*/(k,t) + Sgi • vksf(k,t) - csf(k,t) = -f^W . Vkfs(M) (1) 
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where h is the reduced Planck constant and C the collision operator. 

1. Harmonic-Response Method 
When the perturbation is sinusoidal [£E/,or = iEexp(iwi)], the response is also sinusoidal 

\6f(k,t) = 6f(k,u)exp(iwt)]. Then from Eq. (1) we obtain the perturbed BE in frequency domain 
[I]: 

tuSfO^u) + -f- • V**/(k,«) - CSfQcu) = — i - • Vfc/.(k) (2) 

From the knowledge of 6f(k,u>) we obtain the Fourier transform Sv(u) of Sv(t) as: 

(3) 

The complex quantities Sv(u>) and £E are linearly related through the a.c. differential mobility 
fi(u) as: 6v(u) = fi(u)SE. 

By assuming a spherical symmetry of the band model the perturbation term 8f(k,w) can 
be written as 6f(k,0,w) where k = |k| and 0 = (E,k). After discretization, the gradient and 
the collision operators in Eq. (2) appear as linear combinations of 6f(k,0,u>). In practice, the 
computed quantity is Sfg = 6f(k,0,w)/6E, represented by a column matrix [SJE] which has a real 
part [6/ejre and an imaginary part [6fE]im calculated as: 

, ( l (4) 
[*Mm = - « ( [ 4 2 + "2M) [g] 

where the square matrix [A] represents the discretized operator [(eEJ//i)Vfc-C], the column matrix 
[g] represents the discretized vector (e/^)Vfc/,(k), and [I] is the identity matrix. The unknowns 
on the left-hand side of Eq. (4) are easily obtained using standard numerical techniques (Gauss 
procedure). This method enables to use an arbitrary value of SE: indeed, since the computed 
quantity is Sfg the actual value of 6E does not appear in Eq. (4). Furthermore, the solution of Eq. 
(4) requires a specific program. We remark also that the solution of Eq. (2) presents difficulties 
for low frequencies (< 108 Hz) because its associated determinant becomes small [2]. 

2. Impulse-Response Method 
In this case we apply a step-like electric field perturbation, £E,tep(<) = SEu(t) where u(t) is 

the step function u(i) = 1 if t > 0 and u(t) = 0 if t < 0. The step distribution response 5/, tep(k,f) 
is then the solution of Eq. (1), and the step velocity response Svatep(t) is given by Eq. (3) where 
6f(k,w) is replaced by £/»tep(k,i). To obtain the transient distribution function 6fstep(k,t), we 
first solve (using a direct method [3]) the transient BE in the constant field Ea, so calculating / s(k) . 
Then we solve the transient BE in a constant field E3 + SE, with the initial distribution equal to 
/ s(k) , thus evaluating the transient /(k,<). The step distribution response is then calculated by 
difference as tf/jteP(k,t) = / (k , i ) - / s(k). Then <fv(w) is calculated as: 

f+°° dSvatep(t) . 
6v(u) = / y exp(-iut)dt (5) 

Thus Eq. (5) provides a second method to obtain the a.c. differential mobility. 
This method can be used by employing the same program developed for the direct solution 

of the BE [3] or the Scattered Packet Method [4] since the accuracy of these methods is sufficient 
to compute precisely d6v,tep(t)/dt. On the other hand, with respect to the harmonic-response 
method, it is necessary to take a value of SE large enough (typically between 1 and 10 % of Ea). 
This calculation can take advantage of an acceleration technique described in Ref. [5]. 

tfv(w) = [ / v(k)tf/(k,w)<f3A; / fa(k)d3k 
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Fig. 1 - 3-D representation of the real part 
of the perturbation of the distribution func
tion [6f{k,9,u)]re (harmonic-response method), 
in arbitrary scales, at frequency v = u/2x = 
1012 Hz, for holes in Si, T = 300 K, E, • 
10 kV/cm, corresponding to a perturbing held 
6E = 1 Vj cm. 
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Fig. 2 - Drift velocity frigit scaJej and time 
derivative of the transient response of the drift 
velocity (left scale). Calculations refer to holes 
in Si with T = 300 K, E, = 50 kV/cm and the 
reported values of6E. 

I I I . RESULTS 
The above procedures are used to calculate the small-signal response characteristics of holes 

in Si at T=300 K. The microscopic model is based on a single spherical nonparabolic-band and 
considers scattering with acoustic and non-polar optical phonon mechanisms as described in Ref. 
[6]. 

Figure 1 shows the real part of the perturbation of the distribution function 6f(k, 6,u) calcu
lated using the harmonic-response method [see Eq. (4)]. Each radial curve gives the variation of 
Sf(k, 6,u>) at a given value of the angle B. In analogy with the Drude model for the a.c. conduc
tivity, the real part describes the dissipative contribution which is in phase with the field while the 
imaginary part (here not reported) describes the optical contribution which is in quadrature with 
the field. Figure 2 reports the time dependence of the drift velocity when at time t = 0 a step elec
tric field is superimposed to E,. The same figure shows the time derivative of the transient response 
of the drift velocity for two different values of SE (we notice that, in order to compare the two 
curves, the reported values have been divided by 6E/(1 V/m)). The excellent agreement observed 
shows that a 6E of few percents of Ea can be employed in order to compute the linear response of 
the system. Figure 3 shows the time-derivative of the velocity response-function 6v3tep(t) (divided 
by 6E/(l V/m)) whose Fourier transform gives tfv(w) according to Eq. (5). At time t=0, all curves 
have practically the same value of [dSvatep(t)/dt]t-o = e6E/m*, where m* is the effective mass. 
The small changes at t = 0 are due to the non-parabolicity of the band. At zero and low electric 
fields, the shape of the velocity response- function is practically exponential with a characteristic 
time constant which corresponds to momentum relaxation. At higher fields the shape becomes 
more complicated by exhibiting a negative part which is understood as follows. At the initial stage 
of the velocity relaxation, carriers obtain extra velocity, since their initial momentum relaxation 
time rp is somewhat longer than that in the new steady-state. Then, the energy relaxation affects 
TP (i.e. 7V becomes shorter) and this extra velocity is lost. Therefore, the energy relaxation is 
responsible for the negative contribution of the velocity response-function. 

The harmonic and impulse response methods are further used to calculate the differential mo
bility spectrum which is reported in Fig. 4. The circles and the solid line show the a.c. mobility 
computed respectively with the harmonic- and the impulse-response method. The agreement be
tween the two techniques is excellent, thus validating the present approach. In particular, from Fig. 
4 significant deviations from the simple Drude slope of fiT and fii are evidenced. This peculiarity 
is explained as follows. At zero and low d.c. electric fields the impulse velocity response decreases 
monotonously with increasing time (see Fig. 3), and the characteristic relaxation time involved is 
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Fig. 3 - Time derivative (divided by 
£25/(1 V/m)) of the transient response of the 
drift velocity. Calculations refer to holes in 
Si with T = 300 K, and SE = 1 V/cm for 
E, = 0, and SE = Q.1E, otherwise. 1: E3 = 0; 
2: E, = 5 kV/cm; 3: E3 = 10 kV/cm; 4: 
E„ = 20 kV/cm. 
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Fig. 4 - ileal part fiT and imaginary part pi of 
the a.c. mobility for holes in Si at an applied 
d.c. electric field Es = 50 kV/cm. Circles : 
harmonic-response method with SE = IV/cm; 
Solid line: impulse response-method with SE = 
0.1E,. 

then the momentum relaxation time. At higher fields, the energy relaxation time begins to play a 
role. This results in a negative value of [d6vatep(t)/dt], which corresponds to a bump in ur With 
increasing electric field, /xr increases in the low frequency region, which implies a positive value of 
Hi then decrease resulting in a negative value of fi{. 

IV. CONCLUSIONS 
We have presented two methods for calculating the small-signal response around the d.c. bias 

in bulk semiconductors, using direct numerical resolutions of the perturbed Boltzmann equation. 
Both methods have been validated for the case of holes in Silicon and proven to give exactly the 
same results when used to compute the differential mobility spectrum. The harmonic-response 
method requires to perform a simulation for each frequency of interest while the impulse-response 
method gives directly the whole spectrum within one simulation. The methods are deterministic 
and therefore overcome the difficulties of the stochastic methods (such as Monte Carlo simulations) 
in calculating with high accuracy transport parameters on a hydrodynamic time scale. 

ACKNOWLEDGMENTS 
This work has been performed within the European Laboratory for Electronic Noise 

(ELEN) and supported by the Commission of European Community through the contracts ER-
BCHRXCT920047 and ERBCHBICT920162. Partial support from the italian Consiglio Nazionale 
delle Ricerche (CNR) and the Centre de Competences en Calcul Numeriques Intensif (C3NI) is 
gratefully acknowledged. 

REFERENCES 
[1] J. C. Vaissiere, J. P. Nougier, L. Varani, P. Houlet, L. Hlou, E. Starikov, P. Shiktorov and L. 

Reggiani, Phys. Rev., in press. 
J. P. Aubert, J.C. Vaissiere and J.P. Nougier, J. Appl. Phys. 56, 1128 (1984). 
P.A. Lebwohl, P.M. Marcus, Solid State Commun. 9, 1671 (1971). 
J.P. Nougier, L. Hlou, P. Houlet, J.C. Vaissiere and L. Varani, Proceedings of the 3rd Int. 
Workshop on Computational Electronics, Portland (1994). 
L. Hlou, These de Doctorat, Universite Montpellier II (France), 1993 (available upon request). 
J. C. Vaissiere, These de Doctorat es Sciences, Universite Montpellier II (France), 1986 (avail
able upon request). 

56 




