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Abstract 

We present an original technique for the solution of the Boltzmann equation in bulk semiconductors: the 
Scattered Packet Method. This method intends to combine advantages and to overcome shortcomings of the 
direct solutions of the Boltzmann equation and of the Monte Carlo methods. The detailed procedure of the 
Scattered Packet Method is described and applied to the case of p-type silicon. The results obtained for first 
and second order transport parameters are found to be in excellent agreement with classical methods. 

I. INTRODUCTION 
Classical methods of solution of transport equations in semiconductors, such as die Monte Carlo (MC) 

method and the direct solution of the Boltzmann equation (BE), have shown their efficiency to provide 
transport coefficients. Anyway both methods have some inherent shortcomings. Direct solutions of the BE 
calculate distribution functions wim high accuracy but don't take into account fluctuations. MC methods, due 
to the stochastic nature of the procedure and die limited number of carriers involved, meets with difficulties 
in calculating with high accuracy quantities on a hydrodynamic time scale such as die transient response of 
drift velocity and energy, small signal coefficients, etc. In order to combine the advantages of the above two 
methods, we have developed a new technique called die Scattered Packet (SP) Method. In this 
communication, the SP procedure is discussed in detail. Then, die theory is applied to the case of die p-type 
silicon and the results are compared with diose obtained through classical metiiods. 

II. THEORY 
We consider a volume of die k-space large enough so diat die number of carriers outside it is negligible. 

This volume is a sphere of radius k^ which, in spherical coordinates with the polar axis along die applied 
electric field E, is described by: 0 < k < kmax, 0<0<7t, 0<<p<2n. The bandshapes are taken spherical, 
so that die variable <p can be omitted due to die symmetry around the electric field. 

We discretize this volume in meshes DL = Dtj centered in kL = k(kt, 0j) and limited as follows: 
ki-Ak/2<k'<ki+Ak/2 and 0j -A6/2 <0'<9j + Ad/2 (1) 

The volume of the mesh DL is: 
rq>=2x fffi+Ae/2 fk,+Ak/2 

V, = [ dq>\ sinddO] k2dk (2) 
L iq>=0 iej-AB/2 Jk,-Ak/2 

Relations (1) and (2) are of course modified at die boundary of die domain. 
The ensemble of carriers located in the volume VL are defined as die packet PL. nL (t) = n(kt, Gj, t) is 

the number of carriers contained in VL at time t. The distribution function is simply given by 

fL(0=»L(t)/vL. 
The purpose of the metiiod is now to determine a time-independent evolution matrix B tiiat gives n(t + At) 
when applied to n(t), i.e. in matrix form: 

[n(t + At)] = [B][n(t)] (3) 
The matrix element B^ of [B] is the transition probability from die cell number L to the cell number M 

during the time interval At. In order to increase die accuracy in the calculations of [B] we divide each mesh in 
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submeshes of volume Vh so that VL = ^ Vh . The number of carriers contained in the subcell h is given by 
nh = nLVh /VL. Now, we want to determine the repartition of this sub-packet on the different meshes of the 
domain after a time-step At sufficiently short so that the probability of having more than one collision during 
At is negligible. In order to calculate this repartition, we use some kind of Monte Carlo procedure with 
constant time-step. Under the application of an electric field, the carriers of the subcell h make a free-flight 
of duration At which transfer them into another subcell j of centered vector k;=kj1+eEAt//z. Let p0 be the 
probability to have no collision during At, pl the probability for an optical phonon absorption, etc. Therefore 
the number of carriers having no collisions is » ; = p0nh and these carriers are located in the cell N which 
contains the subcell /. The element B^ of [B] is incremented by ru. The number of carriers undergoing an 
optical phonon absorption is «drcfa4. = p/ih. These carriers are scattered along a sphere of constant energy 

according to the angular repartition probability. In a mesh M of this sphere, the number of carriers is (for an 
isotropic interaction): 

+A0/2 
nM ~ncirclek \_hM-AB/7 J_Jo J (4) 

The element BML of [B] is then incremented by nM. For anisotropic interactions Eq. (4) is slightly modified. 
The column L of [B] is filled when all the sub-packets of PL have been scattered in k-space. By repeating the 
same procedure for all the initial packets we finally evaluate the evolution matrix [B] which satisfies Eq. (3). 
We notice that [B] depends only on the material, the carrier concentration, the lattice temperature, the electric 
field, the time-step and the number of meshes used for the discretization of the k-space. 
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Fig. 1: 3-D representation of one packet of carriers 
centered in k = 10 nf ,6=0. Calculations are 

performed for the case ofp-Si with Na=0, T=300 K 
and E=20 kV/cm. 

t -At 

Wl^ 

Fig. 2: Evolution during one time-step At=lfs of one 
packet initialy centered in k = 109/n-1, 0 = 0 . 

Calculations are performed for the case ofp-Si with 
Na=0, T=300 K and E=20 kV/cm. The vertical scale is 
not linear in order to enhance small values ofn(k,At). 

To better clarify for the reader the repartition of a packet in k-space, let us consider one packet PL 

centered in k = 109/w_1 and 0=0 at time t=0 as shown in Fig. 1. By construction, the column L of the 
matrix [B] represents the packet repartition at time At when the initial number is equal to unity and located in 
kL. We have drawn on Fig. 2 n(t=At) which is proportional to the column L. The peak corresponds to the 
carriers that have been only displaced by the electric field without being scattered, and the circle at the same 
I k I refers to carriers which have undergone an elastic scattering. The inner and outer circle correspond to 
carriers having emitted or absorbed an optical phonon, respectively. 

To study the transient regime, at time t=0 the number of carriers in the state kî  is nL chosen equal to the 
thermodynamic value of the number of carriers of this state. Then, using Eq. (3) n(k,At) is computed and so 
on untill the stationary regime is obtained.The resulting algorithm (similar to the lattice-gas cellular-
automaton method [1]) is physically equivalent to an ensemble MC method, using a considerable amount of 
carriers and without any use of random number. 
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III. CALCULATION OF THE VELOCITY AUTOCORRELATION FUNCTION 
By neglecting cross correlation terms between velocities of different carriers, the autocorrelation function 

of the fluctuations of the drift velocity can be written as follows: 

C(t) = Z(^(O-yJ(y,(0)-yd) (5) 

where N is the total carrier number, v, (t) the velocity of the carrier i at time t, vrf the drift velocity. 
Let us define by Fjjvi(t)me ensemble of carriers leaving the state kL at an initial time and reaching the state 
kM at time t. By construction, these ensembles verify the two following properties: 

(i) they constitute a partition of the whole system, 
(ii) the carriers belonging to a given ensemble have the same initial and final velocity: V(0)=VL and 

v(t)=vM> where VL and VM are the projections along the electric field of the carrier velocities in state L and 
M. 
Therefore, the correlation given by Eq. (5) can be obtained by summing elementary contributions from each 
family FLM(t): 

c(o=SxZw^(o (6) 
with 

Cm(t) = nIM(t)(vL-Vd)(vM -v~d) (7) 
where n1M (t) is the carrier number of the family Fny[(t). At time t=0 the number of carriers in the state kî  
is n£ chosen equal to its steady state value in the applied electric field E and mj^L *s taken equal to zero. 
Using the SP method riLMW anc^ CTJMO)

 a r e computed. The number of simulations is equal to the number 
of meshes in k space (about 500). An acceleration technique described in Ref. [2] is used in order to reduce 
the CPU time. The diffusion coefficient can then be obtained taking the Fourier transform of Eq. (6). 
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Fig. 3: 3-D representation of the steady-state carrier , . ^ ^ disMbXlfuncZnf(kJ along the 
POpUlaTtufT^ZlPffTf{Z^CaSe electric field in p-Si with Na=0,T=300K and E=20 ofp-SiwithNa=0,T=300KandE=50kV/cm. . . , , ™ , , ,,. , . ., .. . , ,. , 

' r kV/cm. The dashed line refers to the direct solution of 
the BE and the solid line to the SP method. 

IV. RESULTS 
We present the results obtained for the first and the second order transport coefficients in the case of a p 

type silicon at T=300 K. The microscopic model is based on a single spherical nonparabolic-band and 
considers scattering with acoustic, impurity and non-polar optical phonon mechanisms as described in Ref. 
[3]. 

Figure 3 shows the steady-state number of carriers given by the SP method. The number of carriers in the 
cells located near k=0 (centre of the plot) and along the direction of the field is small, due to k sinO = 0 (cf 
Eq- (2)). 
Figure 4 shows the steady-state distribution function fQc^ along the electric field for an acceptor 
concentration Na=0. We observe an excellent agreement with results obtained from the direct solution of the 
BE [3]. The same agreement is found for the drift velocity as a function of time which is reported in Fig. 5, 
for three different electric fields. 
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Therefore we have shown that the SP method keeps the accuracy of the direct solution of the BE in 
calculating first order transport parameters. 
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Fig. 5: Average velocity as a JUnction of time for the 
reported electric fields in p-Si with Na=0 and T=300 
K. The dashed line refers to the direct solution of the 

BE and the solid line to the SP method. 
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Fig. 6: Diffusion coefficient as a function of the 
electric field in p-Si with Na=0 and T=77 K. The 

stars refer to the MC method and the solid line to the 
SP method 

As concerning second order transport parameters, Fig. 6 shows the low frequency diffusion coefficient as 
a function of the electric field. Also in this case the agreement between results obtained by the MC method 
[5] and the SP method is excellent. 

Using about 500 cells, in order to compute precisely the 500*500 matrix elements Bm, we compute (see 
Eq.(4)) how many particles from each of the 62500 subcells of each cell L are scattered in each of the 500 
cells M. Due to the energy conservation, with about 16 steps in 0, this requires 62500*17*500 computations 
for each scattering mechanism. With optical absorption and emission, acoustical and impurity scatterings, the 
calculation of the matrix [B] takes about 30 minutes, the stationary regime of the distribution function is 
obtained after few seconds for a time-step of 1 fs and the correlation functions after few minutes on an IBM 
3090. 

V. CONCLUSIONS 
We have presented a new technique to simulate carrier transport in bulk semiconductors based on an 

original numerical solution of the Boltzmann Equation. The results obtained for the distribution function, the 
first and second order transport coefficients have been found to be in excellent agreement with classical 
methods. The advantages of this method can be summarized as follows: a procedure closed to the corpuscular 
reality, a high accuracy calculation of distribution functions and fluctuations within a reasonable CPU time. 

Developments of the Scattered Packet Method towards the device simulation and the study of electronic 
noise seems to be promising. 
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