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Abstract 

We investigate the line shape of the transmission probability in quantum waveguides 
with resonantly-coupled cavities. The lifetime of the quasi-bound states is extracted 
from the asymmetrical transmission amplitude on the real-energy axis. The reso-
nance/antiresonance feature in the vicinity of each quasi-bound state is characterized 
by a zero-pole pair in the complex-energy plane. We develop a generalization of the 
familiar symmetrical Lorentzian line shape, and discuss it in terms of Fano resonances. 

I. Introduction 

A common computational problem in quantum transport is to find the lifetimes of quasi-
bound states from the transmission peaks. The underlying theory is that each quasi-
bound state leads to a pole of the propagator (and the transmission amplitude) in the 
complex-energy plane. If this pole is sufficiently close to the real-energy axis, it will 
result in a resonance maximum of the observed transmission coefficient. A well under
stood problem is double-barrier resonant tunneling, where the lifetimes of the quantum 
well states may be extracted from the width of Lorentzian-shaped transmission peaks. A 
less understood problem is electronic transport in quantum waveguides with resonantly-
coupled cavities [1]. It is known for these structures that the resonator states lead to 
resonance/antiresonance features [2, 3], but their detailed line shape has not been in
vestigated so far. In this paper, we present a theory of the line shape for transmission 
in resonantly-coupled quantum waveguide, and we provide a computational method to 
extract the lifetimes of the corresponding quasi-bound states. 

II. Poles and Zeros 

For double-barrier resonant tunneling (DBRT), it is well known that the resonant trans
mission phenomena are related to the quasi-bound states in the quantum well region. 
Based on the Breit-Wigner formalism, a quasi-bound state at energy Ep and decay time 
T = K/2Y yields a simple pole in the transmission amplitude t(z) at the complex-energy 
z = EP-iT [4], 
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If this pole is sufficiently close to the real-energy axis such that the effect of other poles 
can be neglected, the transmission probability, T(E) = \t(E)\2, for a physical energy on 
the real-energy axis, E, is given by, 

r2 

T{E) = (E-EoV + r*' (2) 

which gives rise to a transmission resonance with a Lorentzian shape. It is an easy 
matter to extract the lifetime of the quantum well states from the width of the observed 

, transmission peak. 

An example of the transmission amplitude for DBRT is presented in Figs. 1(a) and 
(c), where the double-barrier structure and the transmission channnel are schematically 
shown in the inset of Fig. 1(a). In this example, the barrier is 0.2 eV high and 3nm 
thick, the separation of the barrier is 20 nm. We see the poles in the complex-energy 
plane are clearly visible in the contour plot of the absolute value of t(z) in Fig. 1(c). The 
Lorentzian line shape of the transmission probability is shown in Fig. 1(a). 

Figure 1. Comparison of the 
structure of the transmission 
amplitude in the complex en
ergy plane for double-barrier 
resonant tunneling (poles) 
and t-stubs (zero-pole pairs). 
For DBRT, (a) shows the 
transmission probability on 
the real-energy axis, and (c) 
gives a contour plot of the ab
solute value of the transmis
sion amplitude in the com
plex energy plane. For the 
t-stub structure, the corre
sponding plots are shown in 
(b) and (d), respectively. 

Recently, much work has been done on transmission in resonantly-coupled quantum 
waveguide systems, and rich features of the transmission coefficient have been found 
(resonance/antiresonance) [5]. We have shown that the transmission amplitude exhibits 
zero-pole pairs in the complex-energy plane for this kind of the structure [6]. As a con-
squence, zero-pole pairs lead to asymmetrical transmission resonance/antiresonance fea
tures on the real-energy axis. As an example, we show the behavior for a t-stub structure, 
which is schematically shown in the inset of Fig. 1(b). It consists of a main transmission 
channel and a dangling wire of length L = 10 nm. Zero-pole pairs are clearly visible from 
the contour plot of the absolute value of t(z) in Fig. 1(d). 

III. Line Shape 

Based on the zero-pole pair nature of the resonances in quantum waveguide structures, 
we make the following ansatz for the transmission amplitude in the vicinity of each quasi-
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bound state, 

t(z) ~ {z ~Eo) . (3) 

Here, EQ and (Ep—iT) are the positions of the transmission zero and the pole, respectively. 
The lifetime of the quasi-bound state is given by T = h/(2T), as for the case of double-
barrier resonant tunneling. Again, the transmission probability on the real-energy axis 
is given by T(E) = |£(.E)|2, and the proportionality constant in eqn. (3) is determined 
by assuming peaks with unity transmission which are known to occur in symmetrical 
waveguide systems [6]. A unity transmission peak at energy E\ provides two constraints 
for T(E), namely T(Ei) = 1 and j^T \El= 0. It is an easy matter to show that, 

T(E) = 
(EP - £0)2 + H 

(E - E0f 

(E - EPy + P 
(4) 

The above expression gives the line shape of the transmission probability for resonantly-
coupled quantum waveguides in terms of three parameters, namely the energy of the 
transmission zero, EQ, the energy of the resonant state, Ep (the real part of the pole 
energy), and the inverse lifetime of the state, T (the imaginary part of the pole energy). 
Note that (4) produces an asymmetrical line with a resonance/antiresonance behavior. 
Such asymmetrical line shapes have previously been noted in atomic and molecular physics 
[7]. These so-called Fano resonances are know to occur when a bound state is coupled to 
a continuum of states, thereby leading to resonance phenomena [8]. 

In his original paper [7], Fano, after somewhat lengthy derivations, found that the au-
toionization cross section could be parameterized by (q + e)2/(l + e2), where e is a reduced 
energy (it is defined as e = (E — ERC^/V, where Ejtes is the energy of the resonant state) 
and q is treated as a parameter (it is a complicated expression involving matrix elements). 
We note that this is the same line shape as our eqn. (4) by making the following substitu
tions, e = (E — Ep)/T and q = (EP — E0)/T. Comparing our approach to Fano's [7], we 
note that e has a similar meaning where Ep, the real-part of the pole energy, corresponds 
to Eftes, the energy of the resonant state. For the parameter q, our approach yields a 
simple expression which could not have been inferred from Ref. [7]. Apparently, Fano's 
line shape corresponds to a zero-pole structure in the complex-energy plane, a fact which 
has not been noted before. 

Given a certain transmission curve, we now can fit each resonance/antiresonance feature 
to obtain the lifetime of the corresponding quasi-bound state. Using the known energies 
of the transmission zero, EQ, and transmission one, E\, we can find, 

E,-!*±M±!@E*E*, (5) 

The choice of the sign in the above equation determines whether Ep > EQ or Ep < EQ. 
With this, the only unknown parameter is V which may be used to obtain the best fit of 
the theoretical line shape (4) to the given transmission curve. We seek the best fit in the 
sense of the least mean square error. 
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IV. Results 

We now present several examples to fit 
the lineshapes of resonance and antires-
onance pairs. Figure 2 presents fits of 
the resonance/antiresonace line shapes for 
a family of so-called weakly coupled t-
stubs [6], which are schematically shown 
in the insets. In Figs. 2(a), (b), and 
(c), the resonant stubs are separated from 
the main transmission channel by a tun
neling barrier of length £ = 1.0 nm and 
height V0 = 0.5 eV, V0 = 1.0 eV, and 
V0 = 2.0 eV, respectively. In each case, we 
show 3 quasi-bound states which lead to 
zero-one features in the transmission prob
ability, and which are labeled in the plots. 
Figures 2(a) , (/?), and (7), show the fitted 
line shape for the resonance numbered 3 of 
cases (a), (b), and (c), respectively. The 
fit is shown by the dotted line, and the 
curve to be fitted by the solid line. 
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Figure 3. Example of fits using the line shape 
(4) for a t-stub with a double barrier structure 
on the transmission channel shown in the inset to 
(a). The fits of resonances 1 - 4 are shown in (b) 
- (e), respectively. 
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Figure 2. Examples of fits using the line shape (4) 
for the weakly-coupled t-stub structures shown in 
the insets. The fits to the third resonant state of 
(a), (b), and (c) are given in (a), (/?), and (7), 
respectively. The fits are shown by the dotted line, 
and the curve to be fitted by the solid line. 

In figure 3, we present another example 
which shows transmission for a t-stub in 
addition to double-barrier resonant tunnel
ing on the main transmission channel. A 
schematic drawing of this waveguide struc
ture is displayed in the inset, and the two 
tunneling barriers have a thickness of 1 nm, 
height of 0.5 eV, and separation of 4 nm. 
Figure 3(a) shows the transmission proba
bility on the real-energy axis. Figures 3(b) -
(e) display the fits according to our ansatz, 
eqn. (3), for resonances 1 - 4 , respectively. 
Again, the fit is shown by the dotted line, 
and the curve to be fitted by the solid line. 
It appears that the zero-pole character of 
each quasi-bound state, leads to extremely 
good fits of the transmission probability in 
the vicinity of each resonance. 



In general, the locations of the poles and the zeros on the real-energy axis are not the 
same, i.e. Ep ^ EQ. It is this fact that gives rise to the asymmetric line shape, eqn. (4). 
Note that from eqn. (5), the position of the pole, Ep, is always between the positions of 
the transmission zero and one, EQ and E\. If the pole and the zero occur at the same real 
energy, i.e. Ep = E0l then eqn. (4) yields a symmetric line shape, 

_ (E - EP? 
1 \EP=E0 - { E _ Ep)2 + T2 • W 

The above expression describes a Lorentzian-shaped reflection line. 

In recent work [3], Price has pointed out that a resonant quasi-bound state can give rise 
to either Lorentzian-shaped transmission or reflection peaks, and he terms these peaks 
resonances of the first and the second kind, respectively. We see that the reflection peaks 
in general will not have a Lorentzian shape, and that Price's resonances of the second 
kind are recovered when Ep = EQ. 

In summary, we have investigated the detailed line shape of the transmission probability 
in quantum waveguides with resonantly-coupled cavities. The resonance/antiresonance 
features in the vicinity of each quasi-bound states can be characterized by a zero-pole pair 
in the complex-energy plane. We have found a generalization of the familiar symmetrical 
Lorentzian resonance peaks. Using several examples, we have demonstrated the utility of 
our line shape (4) to extract the lifetime of the quasi-bound state by a fit to the data. 
We also discussed the asymmetrical line shapes in the context of Fano resonances. 
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