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Abstract 

A comprehensive self-consistent Schrodinger-Poisson simulation is presented. The model 
takes into account the various regions of reduced dimensionality throughout a particular 
structure which can consist of 0D, ID, 2D electron gases or bulk. The feasibility of this 
level of simulation is made possible by an iterative extraction orthogonalization method 
for solving the Schrodinger equation. This method is superior to conventional eigenvalue 
solvers since it generates an arbitrary number of eigenstates and easily couples to the 
Poisson equation. High order effects such as exchange/correlation and single-electron 
charging are also included in the model. Transport is treated in the linear response 
regime and used to investigate the Coulomb blockade oscillations observed by Meirav[l]. 

I. Introduction 

Recent advances in semiconductor fabrication techniques have resulted in a large variety of 
new experimental devices exhibiting quantum effects due to high degrees of confinement. 
In order to provide a realistic model for the physical analysis and design of these struc
tures, we have developed a comprehensive self-consistent simulation tool that merges the 
statistical and quantum mechanical aspects of the problem. In this paper, we give the the
oretical background of the model and its application to the analysis of the single-electron 
charging effects on transport through a quantum dot[l]. Previous efforts at simulating 
quantum structures have focused on localized regions in the device which exhibit reduced 
degrees of dimensionality. Although these simulations have yielded much information on 
the general quantum-mechanical properties in a device active region[2, 3, 4], their failure 
to integrate the dots (0D),leads (ID), contacts (2D), and bulk regions in a particular geom
etry prevents them from achieving good quantitative agreement with experimental data. 
This lack of coherence has been due in large part to computational time constraints in 
solving the Schrodinger equation over an arbitrarily large number of grid-points, NG- Con
ventional eigenvalue solvers typically scale as NQ and generate NQ eigenvectors thereby 
restricting their application to problems with small grids. In a general quantum device, 
however, eigenvalue problems need to be solved in all regions exhibiting reduced dimen
sionality and require a large NG- In addition, only a few eigenenergies are often necessary 
owing to the small number of occupied eigenstates in a typical device. Clearly, a robust 
eigenvalue solver that addresses the above issues and allows easy self-consistent coupling 
to the Poisson equation is needed to bridge the gap between "localized" modeling and full 
scale device simulations. 
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II. Theoretical Background 

We solve the Schrodinger equation with the iterative extraction orthogonalization method 
(IEOM) that propagates a set of eigenstates according to[5] 

| ^ ) = e - ^ l ^ f 1 ) , i th iteration (1) 

where H is the Hamiltonian and n indicates a particular eigenstate. The parameter a is 
selected so as to minimize the error in the Taylor expansion of the exponential operator 
exp(-aH). In general, iV, iterations are required to maintain the accuracy of the Taylor 
expansion and eliminate all the error projections of the basis states \m) of H onto the 
initial guess state |$°). Gram-Schmidt orthonormalization is performed over the entire set 
of states after each iteration to prevent any excited states from collapsing to the ground 
state. This procedure also eliminates all projections of states with m < n such that after 
Ni iterations, 

K ) * l»>+ £ |m>e-*<*--*0M^. (2) 
m=n+l \ n I Yn) 

The repeated exponential scalings of the error projections and Gram-Schmidt orthonor-
malizations therefore eventually convert |$°) into a pure basis state |n). The convergence 
criterion for the algorithm is determined by the expression 

aNi = max l—logfW*) 
Em-En \e(n|<^) 

(3) 

where e is an imposed error tolerance. Clearly, a should be chosen to be as large as possible 
to reduce the number of iterations and still allow a high degree of accuracy in the Taylor 
expansion of exp(-aH). Eq. 3 points out an overall limitation of this method in that 
the number of iterations required to achieve convergence scales inversely with the energy 
separation between eigenstates. This problem can be alleviated somewhat by selecting 
initial states with the appropriate symmetry such that the error projections vanish for 
eigenstates with opposite parity. Following previous time dependent treatments[6, 7, 8, 9], 
the exponential operator in Eq. 1 is typically cast into a split form which separates its 
potential and kinetic energy components. The execution time of each iteration depends 
on how efficiently the discretized kinetic energy portion can be solved. For the rectilinear 
geometries often encountered in quantum devices, the kinetic energy operator can be fur
ther separated into (x, y,z) components which can be treated independently and solved 
by rapid elliptical solvers. In general, each application of the propagator scales with NG 
and the Gram-Schmidt algorithm scales with NQNE where NE is the number of eigenen-
ergies required in a particular simulation. If NE is relatively small, as is often the case in 
nanostructures, NQNE <C NQ and the IEOM shows a significant improvement over con
ventional eigenvalue solvers. The chief advantage offered by the rapid convergence of this 
method is the ability to accurately treat the dimensionality of each region in a quantum 
device out to an appropriate set of boundaries. We solve the 3D Schrodinger equation 
in the quantum dot (OD) regions, the 2D Schrodinger equation in the lead (ID) regions, 
and ID solutions are obtained in the contact (2D) regions. Semiclassical solutions are 
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Figure 1: (a) Experimental device geometry used for investigating single electron charging effects. 
A negative bias on the gate confines charge in the lateral direction to form ID leads and a 
quantum dot between the restrictions. Modulation of the bottom gate bias adds electrons to 
the quantum dot one at a time.(b) Theoretical electron density for a slice taken at the device 
active region. The formation of a quantum dot is visible as an island of charge between the two 
ID leads. 

used for carriers that do not exhibit confinement (holes) and regions that axe not gov
erned by quantum mechanics. Charge densities are constructed by scaling the amplitude 
squared of each wavefunction with its appropriate statistical weight[10]. The distribution 
functions used in the scaling of the OD localized states are derived from the grand canon
ical ensemble with the constraint that only an integer number N* of electrons occupy the 
quantum dot. N* is determined for a given gate bias by free energy minimization[ll]. The 
potential <f>(f) in each region is inherently coupled by the Poisson equation which main
tains continuity of <f>(r) and its first derivative. The Schrodinger and Poisson equations 
are solved self-consistently by a modified Newton method that incorporates a line-search 
step to allow convergence at low temperatures. In addition, exchange and correlation ef
fects are self-consistently treated with the Kohn-Sham approach[12] using Perdew-Zunger 
parameterization for the correlation potential[13]. Presently, the simulation is carried 
out in equilibrium although in principle, nonequilibrium solutions are possible for accu
rate evaluations of the quantum-mechanical current. We therefore compute the quantum 
transport properties of devices in the linear response regime which is typically the case 
for Coulomb blockade measurements. 

III. Results 

We have applied the simulation to the analysis of single electron charging effects in the in
verted semiconductor-insulator-semiconductor structure reported by Meirav et al[l]. Fig. 
1 shows the specific device geometry used in our investigation along with a charge density 
surface taken at the device active region. A negative bias on the top gate confines charge 
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Figure 2: (a) The quasi-ID eigenenergies and their respective localized 0D eigenenergies. The 
eigenenergies associated with the first (solid) and second (dotted) quasi-ID states are the only 
ones occupied (Ep = OmeV). The formation of sharp barriers leads to tunneling into and out 
of the quantum dot. (b) The transport characteristics of the device exhibit sharp thermally 
broadened (T = 50mK, L0 = .8/xm) peaks that correspond to the addition of a single electron 
to the dot and the subsequent lifting of the Coulomb blockade. 

in the lateral direction to form ID leads and a quantum dot between the restrictions. 
The quantum dot is visible in Fig. lb as an island of charge between the two ID leads. 
In addition, the presence of charge in the leads and contacts is also apparent. As the 
bias on the backgate is increased, electrons are added to the dot in single increments. 
This results from the electrostatic Coulomb repulsion between localized electrons which 
modifies the occupation probability of each level and allows only an integer number of 
electrons to occupy the dot. The OD region is delineated by sharp barriers separated 
by a distance L0 which bring the dot into weak contact with the leads via tunneling. 
Fig. 2a shows the localized eigenenergies in the dot superimposed over their respective 
quasi-ID adiabatic eigenenergies obtained by extending the simulation of the leads into 
the quantum dot region. Although two quasi-lD modes have access to the dot, the upper 
channel is essentially closed owing to its relatively wide tunnel barriers and low statistical 
weight. The device should therefore exhibit single mode characteristics. Transport in the 
device is calculated using the appropriate expression derived for the Coulomb blockade 
regime[14, 15]. Transmission probabilities are evaluated using a transfer matrix calcula
tion based on the quasi-ID eigenenergy as a function of distance. The charge imbalance 
caused by single electron occupation is modeled by minimizing the free energy with respect 
to the number of electrons. The difference between successive free energies then gives the 
charging energy required to add a single electron to the dot for that gate bias[14]. Trans
port characteristics of the device (Fig. 2) exhibit sharp thermally broadened peaks that 
correspond to the addition of a single electron to the dot and the subsequent lifting of 
the Coulomb blockade. The peak amplitude and periodicity show good agreement with 
the experimental data[l]. 
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IV. Conclusion 

In summary, we have demonstrated the viability of a comprehensive device-scale simula
tion tool for analyzing quantum devices. The lengthy eigenvalue calculation, which is the 
chief obstacle to this level of simulation via conventional methods, has been overcome by 
employing the rapidly converging iterative extraction orthogonalization method that can 
treat an arbitrary number of eigenenergies and wavefunctions. Finally, transport charac
teristics for a device exhibiting single-electron charging effects were obtained and shown 
to exhibit good agreement with experimental findings. 

Acknowledgements 

The authors would like to thank Tetsuo Kawamura, Paul von Allmen, Jeffery Bigelow, 
Massimo Macucci, and Karl Hess for their helpful advice. Support for this work was 
provided by NSF Grant ECS 91-20641 and the Joint Services Electronics Program. 

References 

[1] U. Meirav, M. A. Kastner, and S. J. Wind, Phys. Rev. Lett. 65, 771 (1990). 
U. Meirav, P.L. McEuen, M.A. Kastner, E.B. Foxman, A. Kumar, and S.J. Wind, Z. 
Phys. B 85, 357 (1991). 

[2] S. E. Laux and F, Stern, Appl. Phys. Lett. 49, 91 (1986). 

[3] A. Kumar, S. E. Laux, and F. Stern, Phys. Rev. B 42, 5166 (1990). 

[4] D. Jovanovic and J. P. Leburton, IEEE Electron Device Lett. 14, 7 (1993). 

[5] R. Kosloff and H. Tal-Ezer, Chem. Phys. Lett. 127, 223 (1986). 

[6] M. D. Feit, J. A. Fleck, Jr., and A. Steiger, J. Comp. Phys. 47, 412 (1982). 

[7] R. Kosloff, J. Phys. Chem. 92, 2087 (1988). 

[8] M. H. Degani, Appl. Phys. Lett. 59, 57 (1991). 

[9] J. Bigelow, J. P. Leburton, and M. Degani, Proc. Int. Workshop Computational 
Electron. Urbana, IL., 309 (1992). 

[10] D. Jovanovic and J. P. Leburton, to be published 

[11] H. Van Houten, C.W.J. Beenakker, and A. A. M. Staring, in Single Charge Tunneling, 
NATO Advanced Study Institute, Series B: Physics, edited by H. Grabert and M.H. 
Devoret (Plenum, New York, 1991). 

[12] W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965). 

[13] J. P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981). 

[14] C. W. J. Beenakker, Phys. Rev. B 44, 1646 (1991). 

[15] Y. Meir, N. S. Wingreen, and P. A. Lee, Phys. Rev. Lett. 66, 3048 (1991). 

312 




