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Abs t rac t 

We present a numerical study of the chemical potential and of the capacitance in a model 
quantum dot. Our model includes the electron-electron interaction and exchange and 
correlation effects within the framework of density functional theory. Our results exhibit 
the typical features observed in experiments, such as the increase in the capacitance for 
increasing number of electrons and the presence of irregularities in the succession of the 
chemical potential values vs. the electron number. 

I. Introduction 

Recent experimental results have shown extremely interesting single-electron phenom
ena in semiconductor quantum dots. The conductance across a quantum dot loosely 
coupled to the external electrodes via low-transparency tunnel barriers has been shown 
to be periodic with respect to the voltage applied to suitably positioned gates [1-3]. 
This effect has been explained as the consequence of the chemical potential in the dot 
lining up with the one in the external electrodes [2]. If the electrostatic energy prevails 
over the quantum confinement energy, the behavior of the dot is substantially capac-
itive and we expect evenly spaced values of the chemical potential versus the number 
of electrons. Several theoretical studies of quantum dots exist in the literature [4-5], 
dealing with both very idealized models and with realistic, three-dimensional models. 
Our aim has been to solve for the chemical potential in a structure which, even though 
simplified, retains all the characteristic features observed in the experiments. We study 
a 2-D model quantum dot defined by a given confining potential. Except for this sim
plification, i.e. the confining potential not determined from the actual characteristics 
of the semiconductor layers and the geometries and voltages of the metal gates, we try 
to take into account all relevant contributions, including many-body effects, within the 
framework of density functional theory. 

II. Quantum dot model 

Our model quantum dot is two-dimensional and defined by the shape of the confining 
potential, represented by hard walls along the perimeter of a square region to which 
we shall refer in the following as "quantum box". The potential within the box is not 
constant, but quasi-parabolic, as the one produced by a positive background charge of 
lOOq (q being the electron charge), uniformly distributed over the surface of the box. 
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The potential effectively seen by the electrons in the calculations presented in this paper 
is substantially the quasi-parabolic part, since this already provides enough confinement 
as to make the electron density vanish before reaching the hard walls. This is a realistic 
approximation of the actual potential in the experimental situations. 
Our study is performed at the temperature of 0 K, thus for a system in the ground state. 
We solve for the eigenfunctions and the eigenenergies of the quantum dot by means of 
an iterative, self-consistent procedure [8] based on the Kohn-Sham density functional 
approach [9]. 
The Schrodinger equation is discretized with a standard five-point formula and the 
eigenvalues and eigenvectors of the matrix thus obtained are computed by means of a 
Ritz iterative procedure. 

III. Numerical results 

The chemical potential is the main quantity we want to evaluate. Once the wave func
tions and the energy eigenvalues have been determined, there are several ways to obtain 
the chemical potential n(N) (N being the number of electrons). We can compute the 
total energy E(N) of the system from [9] 

+ In{f) [Eex{n(f)) + Ecorr(n(7)) - Vex(n(r)) - Vcorr(n(f))]dr, (1) 

where £; are the energy eigenvalues for each electron, n(r) is the total electron density, 
Eex,Ecorr, Vex, Vcorr are the exchange and correlation energies and potentials, respec
tively. 
Prom the definition of chemical potential we have that (i{N) = E(N) - E(N - 1). The 
result of this differentiation, however, may be adversely affected by numerical errors in 
the values of E(N) and E(N — 1). A plot of fi versus N obtained with this procedure for 
a 60 x 40 nm box is shown in Fig. 1 with solid dots. In the same figure we report, with 
empty squares, the chemical potential computed for the same structure with a different 
method: Slater's approximation. The "removal energy", i.e. the energy needed to 
remove one electron from a system of interacting electrons can be approximated [10] 
by e(N + 0.5), the energy eigenvalue for a fictitious additional particle with charge q/2. 
It is apparent that for a small number of electrons both methods yield the same result 
while, for more than 10 electrons, the technique based on the difference between the 
total energies for N and TV - 1 electrons starts being severely affected by numerical 
noise. We have therefore used Slater's approximation in most of our calculations. 
In Fig. 2 we report an idealized representation of the conductance peaks which would be 
measured between two leads very loosely coupled through the a square quantum box of 
various sizes. The height of the peaks is purely conventional and there is no broadening 
because of the assumption of 0 K temperature and of vanishingly small transparency for 
the tunnel barriers. The three plots correspond to three different box sizes: 40 x 40 nm, 
80 x 80 nm and 200 x 200 nm. 
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Fig. 1 Chemical potential vs. number 

of electrons 

0 2 4 6 8 
Scaled dot potential (V nm) 

Fig. 2 Conductance peaks for a square 
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The quantity on the abscissae axis is the dot potential scaled multiplying it by the length 
of the box side in nanometers. This scaling normalizes the three plots with respect to 
the energy associated with the Coulomb interaction [1]. The first peak, coincident with 
the zero reference for the dot potential, is for three electrons. 
The spacing between conductance peaks is very uneven for the smallest box and a 
more careful exam of the plot shows that there are groups of evenly spaced peaks 
corresponding to the various degenerate energy levels in the square box. For example, 
the peaks for the 3rd, 4th, 5th and 6th electrons correspond to to the 2nd and 3rd 
single-electron orbitals, which are degenerate in a square box, in the absence of electron-
electron interaction. 

n=4 71=10 

71=15 7i=30 

Fig. 3 Electron density in a square quantum box. 

As the size of the dot increases, we observe a reduction of the relative importance of 
the quantization energy and the clear prevalence of the Coulomb energy, leading to an 
almost even spacing for the 200 x 200 nm box. The plot for this largest box also shows 
an effect which has been experimentally observed: the reduction of the average spacing 
between peaks with increasing number of electrons. This effect is mainly due to the 
increase of the area of significant electron density when more electrons are added to the 
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dot and see a less attractive potential, because of the screening performed by the ones 
in the lower orbitals. 
In Fig. 3 contour plots of the electron density arc shown for a number of 4, 10, 15, 30 
electrons confined in a 120 x 120 nm quantum box. There is a very significant change 
in the extension of the non-zero electron density and in its shape when the number of 
electrons is increased. This accounts for the observed crowding of conductance peaks. 
A differential capacitance Cd can be associated with a quantum dot, according to the 
following definition: 

Cd(N) 
n(N + l)-/x(NY 

(2) 

This quantity is more readily understandable if we consider a dot in the proximity of 
some conducting surface such as, for example, a metal gate. This is also the most 
common configuration in the devices which have been experimentally investigated. The 
differential capacitance represents the ratio of the electron charge to the variation of the 
voltage between the gate and the dot when an electron is added to the system. If the 
gate is much larger than the dot, it can be approximated with an infinite conducting 
surface and modelled with properly placed image charges. 
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Fig. 4 Capacitance vs. length for 4 electrons. 

The results of our calculations of the capacitance [8] in the presence of metal gates are 
shown in Fig. 4. The four curves arc for 4 electrons in a rectangular quantum box with 
a length/width ratio of 4/3 and a metal gate at a distance d of 5, 15, 60 nm or no gate 
at all. We sec that, while for no gate and for a distant gate the capacitance grows in a 
substantially linear fashion as we would expect for a 2-D geometry isolated in 3-D space 
(see e.g. [2]), for a very close gate the behavior becomes almost quadratic, reaching the 
well-known classical limit of the parallel plate capacitor. For a small gate-dot separation 
we perform simply a Hartrec calculation, because the expressions used for the exchange 
and correlation potentials [8] do not hold in the presence of strong interaction with the 
image charges. 

IV. Conclusion 

We have studied a model two-dimensional quantum dot with a quasi-parabolic confining 
potential, including many-body effects within a density functional approach. Results for 
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the chemical potential in a square box have been presented, showing the transition from 
a behavior dominated by quantum effects to one in which the Coulomb charging energy 
is predominant. The differential capacitance which can be thus defined approximates 
the one of a conducting 2-D surface with a shape like the one of the area of significant 
electron density in the quantum dot. 
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