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Abstract 

We demonstrate a useful decomposition of the potential energy, which accelerates the relaxation 
method for finding the ground state of a Schrodinger operator in multiple space dimensions, 
and improves the ultimate accuracy achievable. The potential decomposition makes the 
Schrodinger operator approximately separable for the evolving approximation to the ground 
state; this decreases the error associated with the long time-steps in alternating-difference 
implicit schemes. 

I. Review and Motivation 

A central step in many quantum modeling problems is to find the lowest-energy eigenstates of a 
Hamiltonian operator. A standard approach to find them is the relaxation technique [1]. 

The relaxation technique, applied to find the ground state of Hamiltonian H, amounts to 
evolution of the Schrodinger equation in imaginary time: 

H<p(f)=-S 3,9(0, (1) 

Starting from an initial condition that has nonzero overlap with the ground state, the ground 
state is asymptotically dominant after imaginary times long compared to TIQ = H /{E\-EQ), 

(pit) ~ ao(0 m • (2) 

(£n and E\ are the ground and first excited energies of the Hamiltonian, respectively; UQ is a 
space-independent coefficient.) The primary goals in such an evolution are stability and 
accuracy. Implicit techniques exist which are well-known to yield stable evolution both in real 
and imaginary time, in which accuracy can always be assured by using a sufficiently small time 
step At. The simplest of these is 

( 1 + AtH/K ) cpi = (pi-1 , (3) 

with <pi = <p(/y); tj = jAt. 

However, just as not all eigenstates are required, similarly not every kind of accuracy is 
required either. In particular, since the object of the relaxation is simply to remove the high-
energy components as rapidly as possible, in order to examine what is left, an accurately 
exponential decay of those components is less important than their mere rapid disappearance. 

For this reason, it is common to accelerate the relaxation procedure by using long time steps. 
When this acceleration is used with one-dimensional Hamiltonians, one converges to the 
ground state. 

The evolution described in (3), like other implicit evolution methods, requires inversion of a 
large matrix (in this case, the matrix representing 1 + At H/H). The matrix to be inverted has a 
dimension equal to the number mesh points. This dimension grows as the inverse of the mesh 
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spacing raised to the power of the mesh dimension. For multidimensional problems, this 
inversion is impractical or numerically intractable. Instead, standard time-evolution techniques 
for multi-dimensional Hamiltonians typically use an operator-separation or alternating-direction 
implicit (ADI) scheme. For example, decomposing a two-dimensional Hamiltonian H 2 0 as 

H2D = Hx + H? , (4) 

one may write 

(pi = qxi-1, (5) 
i + At Hx/n i + At ny/n 

or equivalently: 

( l + At YPlH ) (pi-0-5 = (pH , (6a) 

( l + At Hx/K ) (pi = (pi-0-5 . (6b) 

If Hx and Hy involve only the kinetic energy of motion along x and y directions respectively, 
then each step (6a, 6b) requires the solution only of a tridiagonal matrix. 

In ADI schemes, short time steps are necessary not only for the accurate exponential decay of 
high-energy states, but also for the accurate estimation of the ground state. For example, in 
(5), (p approaches the ground state of 

H'=H2D + H x H y - , (7) 

n 
which by perturbation theory implies a ground state energy that also is accurate only to first 
order in At. As a result, while short time steps may be used initially to accelerate the dissipation 
of high-energy components, eventually short time steps must be used to achieve accurate 
ground states. In this kind of variable time-step relaxation, it can be difficult to determine 
unambiguously how well one is converging. (See however, work by Doss and Miller on ADI 
solution of Laplace and related equations [2], in which a way is found to optimize the time 
step.) In general, efficient use of this approach can require a certain amount of user interaction, 
and is correspondingly difficult to program for systematic application. 

Separable Hamiltonians constitute an important exception to the above distinction between one-
dimensional and higher-dimensional. That is, if an ADI scheme consists of the alternating 
application of the separated components of a separable Hamiltonian, then relaxation converges 
to the appropriate ground state even for large time steps. [This can be seen immediately in (7), 
from the fact that the ground state is simultaneously an eigenstate of Hx and Hy as well as 
H20.] Most Hamiltonians (almost all, in the appropriate probability-measure sense) cannot be 
put into separable form. However, as we describe below, it is possible to find a decomposition 
that is separable in a restricted sense: the Hamiltonian is partitioned in such a way that at least 
the ground state is simultaneously an eigenstate of each partitioned component This permits an 
acceleration of relaxation without the usual penalty in accuracy. 

II. Adaptive Potential 

Most Hamiltonians (almost all, in the appropriate probability-measure sense) cannot be put into 
separable form. However, as we describe below, it is possible to find a decomposition that is 
separable in a restricted sense, thus permitting an acceleration of relaxation without the usual 
penalty in accuracy. 
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In order to simplify the presentation, we here consider only two-dimensional Hamiltonians (4). 
W e seek new potentials V0(.x,y) and V^(;c,y) so that, with 

H$=K*+VJ , H j ^ i v j , & 

the ground state <po of H 2 0 also satisfies the auxiliary equations 

Hj(po = Hy(po = j£0<Po. (9) 

If <po is known, (9) can be solved for the potentials using (8). Because the total potential must 
always be V, it suffices to determine only the single function 

A V 5 = i ( v x - V y ) . (10) 

During the time evolution, one knows only (p, the evolving best approximation to (po. To 
indicate this we omit the zero subscripts on the separated potentials. Assuming that <p - (po 
small, we "solve" (9) to find 

(Kx - Ky)(p 
AV[(p] = — K — &• (11) 

2(p 
In the adaptive-potential ADI (APADI) approach, we recompute AV after each time step. Using 
this AV directly to define the current potential is unstable, so instead we relax exponentially 
toward the instantaneous potential, with AV for the ith time step defined by: 

AV> • ( l - a ) A V ' - 1 + a AV[(p»-l], (12) 

and depending on a relaxation parameter a . 

III. Numerical Results 

We have applied the potential (12) in both first-order and second-order operator separation 
schemes. We first treat a separable example (a sum of finite square-well potentials, in the x and 
y directions) in order to compare the adaptive-potential ADI (APADI) scheme not only with 
naive-potential ADI (NPADI: V* = Vy = V/2 ) but also with the a partition using the exact 
separated potentials ADI (SPADI). Figure 1 compares these in a first-order scheme. We plot 
the fractional deviation of the computed ground state energy from the exact ground-state 
energy, using a constant time step (At = 2, in units chosen so that the electron mass, angstrom, 
and electron-volt have unit magnitude), with a one-dimensional well depth of 0.2 eV, a well-
width of 40 A, and electron mass of 0.1 x free-electron mass. The relaxation parameter a is 
0.05. APADI clearly represents a significant improvement over the standard approach, 
represented by NPADI. 

After / =200, SPADI fluctuates due to round-off error. Using second-order operator separation 
("true" ADp, the APADI scheme is significantly better, to the extent that APADI and SPADI 
differ only in this round-off error regime. 
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Figure 1. Fractional error in the ground state energy, found using first-order operator 
separation for an exactly separable problem. 

A nonseparable example, illustrated below, is based on the total potential illustrated in figure 2 
(piecewise constant: 0.0 eV in first and third quadrants, 0.2 eV in the remaining two, with hard 
walls around a square of side 400A). 

Figure 2. A nonseparable potential, with the x axis along the right-hand edge, and the y axis 
along the left-hand edge. 
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After relaxing toward a solution, Vx had the form shown in Fig. 3. Note that Vx is different 
for each energy level. The special case in which it is the same for every level is the usual case 
of a separable potential. 

Figure 3. Vx for ground state of V in figure 2 (different scale, perspective; x-axis still to right) 

The graph corresponding to Fig. 1, for the nonseparable potential, is Fig. 4. This calculation 
was done using a second-order ADI. 
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Figure 4. Fractional error for nonseparable potential. 
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