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Abstract 
A parallelised Chebyschev accelerated over-relaxation algorithm is developed for simulating the 
few electron problem inhigh magnetic fields. A novel form of resonant tunnelling is proposed to 
occur through a single potential barrier due to the confining potential provided to one electron 
by a following electron in quasi-one dimensional current flow. 

I. Introduction 

Arrays of coupled ultra-small capacitor structures exhibit significant charging effects due to the 
large charging energies deriving from the small values of the components of the capacitance 
matrix. In particular, the occurrence of single-electronic effects such as the Coulomb blockade, 
correlated single-electron tunnelling, and the demonstration of switchable single flows, has 
raised hopes of a future single-electronics technology. The "orthodox model"[l] of correlated 
single-electron tunnelling has been highly successful for the relatively large metal-insulator 
systems; it assumes continuous energy distributions, large numbers of states in the 'metallic' 
electrodes and simplified pictures of tunnelling and electron correlation. However, many tenets 
of the orthodox theory are lost in the 2DEG semiconductor systems and in the recently 
proposed coupled Schottky dot structures[2]. Rather than a single electron picture we must deal 
with & few-body problem in which only distant dense 'electrodes' might be treated by self-
consistent mean field approaches. 

Previously[3,4,5] we have developed a vectorised algorithm for the numerical modelling of 2D 
quantum transport through quantum point contact structures, quantum waveguides and 
Aharonov Bohm ring devices using the ADI algorthm on the discretised 2D Schrodinger 
equation. This method fails for high magnetic fields due to errors arising from non-
commutativity of the split kinetic energy operators. It is also unacceptable in accuracy for the 
few body problem and regions of complex quantum chaos. 

II. Algorithms 

This work is part of a much more general problem which concerns the modelling of the 
transport of n-interacting electrons within an arbitrary shaped quantum waveguide (hence 
discrete energy states) including charging effects. Our algorithm has been structured such that 
the interacting 2 electron problem can be studied for a ID spatial model. The 2 electron problem 
in configuration space is isomorphic to the problem of 1 electron in 2D space in the presence of 
an effective 2D potential given by the sum of the confinement potentials for each electron plus 
the Coulomb potential. Consider first the 1 electron 2D time-dependent Schrodinger equation 

ih—y/(x,y,t) = H\{f(x,y,t) (1) 
at 

which has solutions of the form 
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y/(x,yyt) = v r ( x , y , 0 ) e x p | - ^ | (2) 

or 

y/(x,yj + At)=y/(x,y,t)Qxpl-l-—i (3) 

Using the Cayley Expansion for the exponential and defining T = — 
2% 

yr(x,yr-yr(x,yy?gg m 
Where the t indices refer to discrete time. 

Now for a single electron two-dimensional system with time-independent potential profile the 
time-independent Schrodinger Equation is given by 

' fi2(d2 d2) f „ /I , x 

- + — +V(x,y)\yr(x,y) (5) Hyr(x,y) = t-2m dx2 dy 

Using Taylor Expansions this can be approximated to second order in A (the spatial grid 
spacing) by 

HW'*-y = ~2^(¥'X+Uy + ¥'X-Uy + ¥'x-y+1 + V''*-1 ~4<y) + V^<y ( 6 ) 

Where once again the x and y indices refer to the discrete space. Substituting this in Eqn (4) 
above, re-ordering and defining various other terms then gives 

C , , < + vC!> + vCl + v C i + tfS-i = Qx. 
where 
L.y=iP-4-Wx.y (8a) 
o 4^A2 

n&t 

, '+i , ,.,(+i , ,.,f+i , ..,'+1 i .„ ( +i _ 
-''*.> ( 7 ) 

r = -rr- (8c) 
2mA2 

fi2 

The algorithm we use to solve this set of equations is Chebyshev Accelerated Simultaneous 
Over Relaxation, a succesive approximation method. The residual is defined as 

C1 = C K , + vUy + v U , + <>«, + <>-i - Q.y (9) 
where the i index refers to each iteration. This is iterated repeatedly in a chessboard fashion (i.e. 
odd/even) using 

ViX,--T^ do) 
until the residual is sufficently small. The initial wave function for each set of iterations is taken 
as that for the previous time step, co is defined by 
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ft)°=l 

COl= V-5- (ID 

con+l = l 

a-iP2jO)n) 

where py is the spectral radius of the Jacobian method i.e. 

p , = i ( c o s ( ^ ) + cos(%)) (12) 
and J and L are the number of grid points in each direction. 

IV. Inclusion of a magnetic field 

The basics of this algorithm remain the same when magnetic field is included and when it is 
adapted for two ID interacting electrons.Using the symmetric gauge Eqns (7) & (8) become 

C,.y vZ + Q- W vCl,+a+iW ¥'X
+Xy+a - m vCi+a+ifc) vC, = <4 (7a) 

where 
C X i > = ^ - 4 - y l / ; t , > - 0 U 2 + / ) (8a) 

~ _ 4mA2 

Mr 
2mA2 

r = 

(8b) 

(8c) 

(8d) 

(9a) 

h2 

Q ^ = (4 + jV„ + i/J + 0(*2 + y 2 ) ) ^ - (1 - idy) v4+li, 

-(1 + / 0y) ^_1 ( , - (1 - 1 to) < y + i " (1 + ito) < , - i 

0 = md3A2 (8e) 

» • » * * £ (80 
The residual is then defined by 

SS * £* < i +'C1" ̂  *%* + < l + W *3» + (1 - iflr) </Ci 

and used as before to solve for each succesive approximation. 

V. Two Electron case 

If we consider x and y as the ID coordinates of two interacting electrons the time 
independent Schrodinger equation can be written identically to Eqn (5) above with 

V(x,y) = T f + W + W (13) 

where V is the ID electrostatic confinement potential.Therefore using this as the potential 
enables us to use identical methods as above. 

VI. Parallelisation 

The 2 dimensional grid is split evenly over a rectangular array of transputers which iterate 
their own section of grid and swap boundary conditions at each time step. 
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Figure 2(a) Contour plot of modulus of 2-electron 
wavefunction in configuration space 

JLM. 

Ln 
Figure 2(b) Projected total charge distribution in direct 

space for time sequence of Fig 2a. 

273 



Figure (1) transputer linkage (4x4 case) 
The method is parallelised on a 64 transputer array and runs at approximately 200 MFLOPS. 
The results of this study are also being used to validate a novel algorithm for few electron 
transport in 2 dimensions based upon an extension of the coupled-mode formalism [8] 
developed for 1 electron 2D tranport. Applications to chaos in magnetic fields are in progress. 

VII. Coulomb assisted resonant tunnelling in quasi-lD electron systems. 

For the case of 2-interacting electrons transporting/tunneling through bottlenecks in small arrays 
of quantum point contacts we have identified a new resonant tunnelling process which arises 
from the tunnelling decay from the quasi-confinement of one electron between a second 
following electron and a downstream potential barrier. The effect requires mono-mode 
conduction. Hitherto, only the combination of conventional resonant tunnelling with Coulomb 
blockade from the charging of the intermediate quantum well has been identified. Figure (2) 
shows the case of two equal spin electrons initially 30 nm apart (Coulomb energy 4.5 meV) 
encountering a barrier of height 50 meV , width 5 nm for incident kinetic energy of 10 
meV/electron for electrons in GaAs. The effect is strongly damped unless the electron stream is 
strongly correlated in space and time. Coupled quantum dots, long chain polymers, enzymes, 
redox chains provide possible test cases. 
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