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Abstract 
Traffic theoretic or queuing methods are proposed as a natural framework for modelling the 
correlated tunnelling and transport of single electron solitons in coupled tunnel capacitor 
structures below the Coulomb blockade threshold. Stationary state and time-dependendent 
modelling is developed and validated against Monte Carlosimulation. Exact results are obtained 
for the double tunnel junction or quantum dot. The effects of discrete energy states are 
evaluated and the extension to multiple junctions illustrated. 

I. Introduction 

The controlled transport/correlated-tunnelling of single-electronic excitations in coupled 
tunnelling capacitator structures is now experimentally established in metal-insulator, metal-
semiconductor systems and in capacitatively-coupled quantum point contacts in semiconductor 
2DEG structures[1-4]. These structures rely on the existence of ultra-small capacitative 
structures such that the effective charging energies e^/2C exceed the thermal energy kgT [5]. 
By exploiting state-of-the-art nanofabrication it is possible to construct 20nm scale coupled 
capacitors (metal on semiconductor coupled Schottky dots)[6] which point the way to a future 
high temperature, high density nanoelectronic systems technology (Fig.l). 

Figure 1. 40 nm diameter hemispherical Aluminium Schottky dots on p-Silicon with 15 nm 
spacing (Weaver[6]). 

Single-electronic, ultra-small capacitor systems provide a new regime of study for 
semiconductor device modelling wherein the effects of charging become important and the 
Coulomb interaction provides subtle correlation effects. 
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II. Monte Carlo method 

Simulations of arrays of single-electronic tunnel junctions (see figure 2) and gated arrays 
(figure 3) have been carried out to date by Monte Carlo methods which have proved to be 
prohibitive computationally for the extended systems of technological interest. 
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Figure 2. A multi-junction tunnelling array. Figure 3. Gated 2-junction array 
The capacitances C are tunnel junctions. Co is taken to be non-tunnelling. 

In the Monte Carlo approach[7,8] the state of the tunnel junction array is described by the 
number of solitons (electron plus polarisation field) at each node. The total charge on each 
junction/tunnel junction/ground capacitance is the sum of the charges due to the voltage sources 
and the charges induced by the soliton structure.These charges are linearly related to the 
voltages and number of solitons at each node. The evolution of the array is then determined by 
the stochastic process of single electron tunnelling which alters the soliton occupancy vector n. 

III. Queuing theory: stationary case 

In the present paper we introduce a new approach to modelling single-electronic systems that 
captures the Poisson stochastic nature of tunnel events and provides a fast, physically 
transparent and efficient method of calculating the steady-state characteristics of multi-junction 
configurations. This new method involves a re-formulation of the transport equations in terms 
of of queuing theory (traffic theory[9]) and centres on determining the distribution Pj of quasi-
electrostatic soliton excitations that are formed during the transport/tunnelling process. For an N 
junction array the state of the system is described by Sj = (kj, k2,... kjsf) where kj are the 
number of excess electrons(solitons) at node ki(figure 4 shows states for a 2-junction system). 

|i0 M.1 ^2 

Figure 4. Soliton states in a 2-junction. Figure 5. Transitions of soliton states 

An electron may tunnel from a node to a neighbouring node provided a tunnelling conection 
exists (connection matrix Xij = 1). Electrons form a queue at each arrival node where they wait 
for "service" (unlike conventional traffic theory the queues are always full and the "service rate" 
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which is equal to jij the total departure rate from each node i varies as a function of the state of 
the system). The current passing between two neighbouring nodes (l,k) which are connected by 
a tunnel junction with capacitance C l k is calculated from the Pi by :Ik]=e.Si Pi(r"i(k,l) -

r i ( l ,k)) where Pj is the probability of finding the system in state Sj, and T i (k, 1) = 
tunnelling rate from node k to neighbouring node 1 when the system is at state Sj.The average 
voltage across the capacitor Cw can also be calculated as v k l = Z i P i . qk l ( i) / C k l . 
To determine the distribution of the soliton states Pi, consider a single tunnel event from node 

k to node 1 at state S; to form state S;. Define the departure rate (lij = rni(K,A,) for X]d = 

l,from state Sj to Sj for the system already occupying Si. The Poisson nature of the tunnelling 

events allows us to find the total departure rate from state Sj as:|i i= S j M-ij and the 
transition probability from state Sj to S; is thus,rjj = flij / \xi defing the routing matrix R .The 

the average residence time (per visit) at state Si is l/\i±. The input traffic to node i is given by 

Xi = £ X\ rjj . or in matrix form, the traffic erquations are: X. ( I -R) = 0 where X is the 

row vector (Xlr X2, • -Xn) . Unfortunately, the matrix (I-R) has a zero determinant and 
therefore, the traffic equations, have an infinite number of solutions. To proceed let us 
define the occupancy vector m=(m1,m2,...,mn) where rrij=l if the system is found at state Sj 
and m;=0 otherwise. It is clear that the elements of m always satisfy S i m± = 1. The model 
described is similar to a closed network of servers in which there is exactly one job travelling 
(trapped) between the service centres. Let X* be some none zero solution of the traffic 
equations. The probability distribution of m is given as [12]: p (m ) = 
a-L (m^ . a 2 (m2) . . . a n (mn) /G, where 0 ^ ( 0 ) = 1 & a ± ( l ) = X i * / | i i . G is a 
normalisation constant evaluated as :G = X I l i oc-jjirii), where the summation is realised 

over all possible vectorsm. G reduces to G = ^iX^*/\i^. Finally, the distribution of 
soliton structures is found as, 

Pi = G~x .X±* /\i± which is the key result of this paper. 

IV. Exactly solvable example: the double junction 

Figure 6 shows an application to the 2-junction (or single quantum dot) compared with results 
obtained by the Monte Carlo method(750 events).Above a threshold voltage Vth electrons can 
tunnel into and away from the dot, one electron at a time. For N excess electrons the total 
electrostatic energy due to this charge is (Ne)2/!^ where CT is the total capacitance seen by 
the charge, Cp =C1+C2+C0 and C j ^ are the capacitances between the dot and the metallic 
electrodes and C0 is the capacitance to the ground electrode. In this case, on leaving state Sj the 
system can only make a transition to states S{+\ or S}_i(see figure 4). This is a Markovian 

birth-death process which can be solved exactly using the transition rates Xn (Sn_i -> Sn) and 

M-n (Sn -> s n - l ) § i v e n i n t e r m s o f t h e tunnelling rates by: Xn = rn-i(l ,c) + rn-l(r ,c); | in 

=rn(c.l) + rn(c,r).The probability of finding the system at state Sn is found as: 
n 

P n = Z_ 1 . II (A-i/Hi) (n > kX) or = Z"1 (n = ki) 
i=k 1 +l 

k2 i 

Z =1 + E I I (W^n> 
i=k x n=k +1 
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and where kj and k2 are the minimum and maximum possible number of excess electrons that 
can be accommodated on the dot. The states contributing to the process can be discovered 
according to the condition: if X, > 0 and |ij > 0 then both Sj and Sj.j are legal states. 
The oscillations in the dc conductance with gate voltage at low bias voltage correspond to 
transport through the same number of soliton states. In Fig6(a) transport in the different 
segments corresponds to states (0,1),(1,2), (2,3) and so on. At higher bias more states are 
generated leading to splitting of the segments. In Fig 6(b) the sequences are: 
(0,1),(0,1,2),((1,2) and (1,2,3). The maximum of the conductance peaks increases with 
applied bias whereas the minima decrease in amplitude. For high bias V » V t h , the 
conductance approaches the constant valueG -> Gt/2. The speed-up over Monte Carlo 
simulation (750 departures) is about 300 x in CPU time. 
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(a)V = 0.2e/C (b)V = 0.5e/C 

Figure 6. Conductances G/Go and soliton density <n> as a function of voltage Vg for 2 tunnel 
junctions at bias voltages V=0.2,0.5 e/C. Squares:Monte Carlo .lines: queuing theory . 

V. Time evolution 

Suppose the system is found in state S = Sk at t = 0 with initial densities Pi(0) = 8±. At a later 
time t the system will be in a mixture of all possible legal states with densities Pi(t) given by the 

rate equation: 3Pi/dt = Z {Pj |Jji} - Pi | i | . As an application, consider a single quantum dot 

described by the 2 soliton state {S} = { n, n+1}, with birth and death coefficients X and (I 
respectively. If the system is known to be in state Sn at t=0, the rate equation may be solved to 

give: Pn(t) = {[i+X exp(-(X+ji)t} /(X+n); Pn+i(t) = X {1 - exp(-(X + ji)t} l{X + u) 

which in the limit t -> « recovers our earlier result Pn(°°) = \if (X+\i); Pn+l(°°) = XI (X+\i). 

VI. General application to multiple junction systems and quantum dots 

Very complex behaviour is possible with soliton propagation in multiple junctions. Figure 7 
shows an example from the traffic theory where we have enhanced the magnitude of the 
conductance oscillations in a 3-junction array by choosing one element to have a large RC 
value. Here Vr = 0 and VI = -V. In region (a) a maximum of one excess electron can stay in the 
system; the possible states are (0.0), (0.1), (1,0) and the system stays mainly in state (0,1). In 
region (b) die dominany state is (1,1) and up to 2 electrons excess occur. In region (c) 11 states 
contribute to the conduction with betwen 0 and 3 excess electrons. Region (d) has 12 states 
with between -1 and 3 excess charges. The conductance evidently peaks each time the system 
can accommodate one more electron. 

263 



l-y ek /a ot a 3-jmcttaa amir 
U»IUttOT-0 

Coarf adaac* of s 3-fft anay 
KSHUttC-Co 

<U 04 OJ 
V/(«/C) V/(«/C) 

Figure 7. I-V characteristics, conductance and number of soliton states for a 3-junction having 
R3 = 50 Ri, Rl=R2 ; Ci=C2=C3=C; O Q ) . 

The methodology has been extended to (a) quantum dot systems where the isolated charging 
islands have discrete energy levels[13]; (b) macroscopic quantum tunneelling processes [10 ] 
The theory is being applied to the simulation of ultra-small coupled Schottky dot structures[6] 
for which the capacitance matrx requirs a full 3D Poisson solver. 
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