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Abstract 
As semiconductor devices continue to shrink in size, quantum effects are beginning to 
become important in their operation. In this paper, we discuss some approaches for including 
the quantum effects in device modeling. 

I. Introduction 

The transport of carriers in semiconductors and in ultra-small semiconductor devices has long 
been a subject of much interest, not only for material evaluation, but also in the realm of 
device modeling and, more importandy, as an illuminating tool for delving into the physics 
governing the interaction of electrons (or holes) with their environment. The scaling of ULSI 
device dimensions to future chips indicates that we will eventually see devices with gate 
lengths at the 0.05 .̂m level. Very few laboratories have produced even working research 
transistors with gate lengths on the 50 nm scale and litde is understood about the limitations 
(from the physics) that will determine whether or not these devices are practical. On the 
other hand, when devices of 30 nm (or less) gate lengths are made, it is found that then-
performance is different from that of current FETs. Research devices widi gate lengths of 
25-80 nm clearly show that tunneling through the gate depletion region is a major contributor 
(if not die dominant contributor) to current, and gate control is much reduced due to tiiis 
effect [1-3]. Even in MOSFETs, quantization is found to occur in the channel, which affects 
the overall performance of the devices [4]. In consequence, it appears that more detailed 
modeling of quantum effects needs to be included in device modeling for future ultrasmall 
devices. 

There are several approaches that have been used to model quantum effects in semiconductor 
devices (of varying levels of device complexity). In mis paper, we will try to give a short 
overview of some of these approaches, and indicate how they are similar and how they differ. 
In the next section, we discuss how quantum modeling differs from semi-classical modeling. 
We then turn to a description of the various quantum "distribution" functions, discuss their 
equations of motion, and the levels of complexity. In each case, simple examples are 
described where the approach has been used with some effectiveness. 

n. How does Quantum Modeling Differ from Classical Modeling? 

Generally, modeling of quantum phenomena is more complicated than modeling of classical 
and/or semi-classical phenomena. For instance, the energy-conserving delta function used in 
computing scattering rates with the Fermi golden rule is no longer valid, as energy and 
momentum become separate dynamical variables. Thus, we are forced to add a method of 
computing the spectral density, which relates the energy to the momentum, in addition to 
having to compute non-equilibrium distribution functions (or various moments of these). To 
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be sure, in some approaches this is finessed by using single-time functions, such as the 
density matrix and the Wigner distribution function, which essentially integrate out the 
spectral function. But, this is accompanied by the full non-local nature of the potential 
interactions becoming explicit in the dynamical variables; i.e., the potential becomes a two-
point function. Let us consider further how this nonlocality arises. Consider a simple 
potential barrier V(x) • VQu(-x), where u(x) is the Heavyside step function. We assume that 
there is some density existing in the region x > 0, and the question is how the density varies 
near the barrier, a quite typical problem in introductory quantum mechanics, except here we 
have a statistical mixed state to describe. In Fig. 1, we show the Wigner distribution function 
for this case (for parameters appropriate to GaAs, with n = 2 x 101 ' cm-3) for V0 -* °°- We 
note that far from the barrier, the distribution approaches the classical Maxwellian form, but 
near the barrier, it differs greatly. The repulsion from the barrier is required by the vanishing 
of the wave function at the barrier, but the first peak away from the barrier (in the wave 
function) occurs closer to the barrier for higher momentum states. This leads to much of the 
complication evident in the figure. The overshoot occurs to accomodate the need for total 
charge neutrality. Classically, in the absence of self-consistency, the density would be 
uniform up to the barrier, and the differences are the result of the quantum mechanics. This 
variation exists over a distance of the order of several thermal de Broglie wavelengths, which 
provides a spatial scale length. In GaAs, at 300 K, this is about 5 nm for electrons, and of 
course increases with the inverse square root of the temperature as the thermal de Broglie 
wavelength is given by X& = (ftllmk&T)1!2. Thus, nonlocal variations can be expected over 
a range of 10-20 nm even at room temperature! 

Figure 1. The Wigner distribution function for an infinite barrier, in arbitrary units [5]. 

It is clear that the density no longer varies simply as exp(-|3V), where P is the inverse 
temperature, and that modifications to the statistical mechanics need to be made. The 
development of quantum corrections to statistical thermodynamics, especially in equilibrium, 
has a rich and old history. Unfortunately, there is no consensus as to the form of the quantum 
potential correction to this simple exponential. If we could find such a correction, it could be 
utilized in the semi-classical hydrodynamic equations, and most further quantum 
complications ignored. The various forms of the quantum potential, for use in classical 
hydrodynamic equations, has recently been reviewed [6]. One form that has been used [7] 
introduces a quantum pressure term as a modification of the electron temperature, through 

| ABTVff = | *Bre " g£* V2ln(«), (1) 

although other work has reduced the last term by a factor of 3 [8,9]. The form of the last 
term in (1) was originally derived by us and is often termed the Wigner potential [10]. 
Although the results obtained using this model are in agreement with the intuitive 
expectations, it should be noted that the correction term is an average and does not have the 
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momentum dependence expected from Fig. 1. A more recent derivation overcomes this 
limitation [6], but has not been tested in actual simulations as yet. 

Another problem with the use of quantum approaches to device modeling is that most 
quantum discussions, especially those of quantum transport, tend to revolve around closed 
systems, whereas most devices are open systems. In treating such open systems quantum 
mechanically, it is quite difficult to properly define the reservoir (thermal equilibrium) 
regions, as well as the contact regions between the reservoirs and the active device region. 
Because of the nonlocal nature of the quantum system, errors in defining the contact region 
will propagate throughout the device, often leading to spurious results. 

III. Approaches to Quantum Distributions 

Why don't we just solve the Schrodinger equation for a given potential distribution, and then 
weight various solutions with a Fermi-Dirac distribution? This approach actually works well 
in equilibrium situations, or when we know in detail the properties of all contact regions and 
the exact potential structure within the active area. However, finding the steady-state 
solutions with the above approach often entails more work than using one of the techniques 
for directly finding a quantum distribution self-consistently within the entire device domain. 
A more important reason for not a simple Schrodinger equation solver (plus Fermi-Dirac 
weighting factors) for a distribution is that the actual distribution in the active region is a very 
non-equilibrium distribution which we must find as part of the modeling problem. But, the 
approaches discussed below are developed from the Schrodinger equation; we are solving a 
more general function, which incorporates the solution of this equation for an entire 
functional set. In addition, since the Schrodinger equation just defines a wave function, 
which is one part of the density (or a representation for an electron), it is quite difficult to 
incorporate dissipation through scattering mechanisms. Nevertheless, the starting point for 
all of our approaches lies in a mixed state wave function ^(x.r), which is taken to be a field 
operator describing the degree of excitation of the various states of the system (this is one 
method of conveniently describing the mixed state of the system). Depending upon the 
Hamiltonian, this wave function can be a one-electron wave function or a many-body wave 
function. 

A. The Density Matrix 

The density matrix is formed from the composite of two such wave functions described 
above. It may be written as 

p(x,x,,r) = ¥(x,r)vF+(x,,r), (2) 

where the "+" symbol on the second wave function indicates the Hermitian adjoint function. 
This is an equal time function and describes the correlation between events at positions x and 
x'. Obviously, <p(x,x,r)> = <*¥(x,ty¥+(x,t)> = n(x,t) defines the local density of particles. 
Here, we have taken an expectation of the density operator, since the definition in (2) is 
obviously that of an operator. The equation of motion arises from the Liouville equation. It 
may be written as (in the absence of dissipative processes) 

where the last term, in the square brackets, is a short-hand notation for 
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[sinh(| s-V) V] - \ [V(R + §) - V(R -§)] , (4) 

and we have introduced the coordinate transformations 

R = 2 ( x + x') » s = x - x" . (5) 

The density matrix has been used directly to study a number of devices. In Fig. 2(a), we 
show the density matrix for a double-barrier resonant tunneling diode (DBRTD) in 
equilibrium. For comparison, we also show the Wigner distribution function (described 
below) for this structure in Fig. 2(b). Both calculations are for barriers 0.3 eV high, 5 nm 
wide, and separated by 5 nm. Both are within lightly doped regions adjacent to the barriers, 
5 nm wide for the Wigner function and 7.5 nm wide for the density matrix. In both 
calculations, the nominal density was 1018 cnr3, and Fermi statistics were applied at the 
boundaries. For the density matrix in Fig. 2(a), this is represented by a dampled oscillation in 
the nonlocal coordinate, whose period decreases as the density increases. Density is obtained 
from the diagonal component, which for the DBRTD, shows a small buildup of charge within 
the quantum well. The peak of this charge is approximately 2 x 1016 cm*3. 

(a) (b) 
Figure 2. The double-barner resonant tunneling diode in equilibrium: (a) the density matrix 
[10], (b) the Wigner distribution function [13]. 

For the density matrix under dynamic current flow conditions, dissipation is incorporated and 
serves to couple the real and imaginary parts of the density matrix. Current boundary 
conditions are represented by a displaced distribution function, similar to a displaced Fermi 
distribution. Dissipation is introduced as a phenomenological scattering potential whose 
diagonal components have the properties of a dynamic quasi-Fermi level [11]. At low values 
of bias, the scattering potential has the form (x - x')[J/xp(x,x)]p(x,x'), which is similar to that 
discussed in [12]. Here J and T represent current and scattering time, respectively. This form 
of scattering conserves the total number of particles. For simple barriers, the current-voltage 
characteristics display the expected exponential dependence on potential energy, with 
accumulation at the emitter side of the barrier and depletion on the collector side. 

The computational procedures are described in detail in [12], and briefly may be described as 
re-expressing (3) as a coupled first-order system of equations, and seeking solutions along 
characteristic directions for the coupled equations. All of the calculations incorporate equally 
spaced grids, and a coupled Poisson solver. For simple barriers, the current-voltage 
characteristics display the expected exponential dependence on potential energy, with 
accumulation at the emitter side of the barrier and depletion on the collector side. This is 
shown in Fig. 3 for a 0.3 eVbarrier, 15 nm thick, which is embedded in a 30 nm lightly doped 
region (GaAs). In Fig. 3(a), the real part of the density matrix, which is symmetric about the 
diagonal and shows charge accumulation on the emitter side. The imaginary part is shown in 
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Fig. 3(b), and is anti-symmetric, as its derivative along the nonlocal direction yields die 
current. We illustrate die computed current-voltage relationship in Fig. 3(c). 

Figure 3. The DBRTD under bias, near the valley of die I-V curve. Parts (a and b) illustrate 
die real and imaginary parts of die density matrix, respectively, while the I-V curve itself is 
shown in (c). 

B. The Wigner Distribution Function 

The Wigner distribution becomes important when die physical problem is one mat is better 
understood in terms of a phase-space distribution, and die carrier distribution function in an 
inhomogeneous device is one such problem. This phase-space distribution is not easily 
represented by the density matrix itself, but the Wigner distribution attempts to present an 
analogy between quantum and classical phase space for statistical mechanics. Since the 
statistical picture in phase space is well understood, indeed uses the Boltzmann equation for 
classical mechanics, transforming to a similar picture in quantum statistical mechanics allows 
the physical picture of a problem to be better understood. Unfortunately, position and 
momentum do not commute in quantum mechanics, and the two cannot be measured 
simultaneously to any great accuracy in phase space. This appears in die Wigner picture by 
regions of the phase space in which the distribution is negative in value. When the 
distribution is integrated over all space, the probability density in momentum space is 
recovered, and this quantity is positive definite. When the distribution is integrated over all 
momentum, the probability density in real space is recovered, and this quantity is also 
positive definite. In fact, if the Wigner distribution function is coarse-grain averaged over a 
region of phase space corresponding to a six-dimensional volume element whose size is set 
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by the uncertainty principle, the result is again a positive-definite "averaged" function. The 
Wigner distribution function is defined from the density matrix through the Fourier 
transform, often called a Weyl transform, 

Fw(R,p,r) = —^-3jd3seiP-^<p(x + | , x - | ) > (6) 

which in a sense is a Fourier transform on the variable that measures the distance from the 
diagonal in the density matrix p(x, x'). Since the Wigner distribution is a c-number, an 
expectation has been indicated in (6). This transformation accentuates the correlation that 
exists in the wave functions separated in position (if the correlation exists). The Wigner 
function builds in the correlations between different positions that are inherent in the off-
diagonal elements of the density matrix. The Wigner function is evaluated at position R, but 
the density matrix terms that are used in the Fourier transform are those at the two positions 
R ± (s/2). The wave function may actually vanish at R, but the Wigner function will have a 
nonzero value in these areas in which the wave function vanishes, and the values in these 
such regions are measures of the correlation between the two endpoints on the vector s. The 
equation of motion for the Wigner distribution function is given by (again, in the absence of 
dissipation) 

where 

^ f -^P-VF W = - J Jd3p,M(R,p,)FW(R,P + p\0 . 

M(R,p') = fd3seiP,s^[sinh(js»V)V] . 

(7) 

(8) 

Equation (7) is quite similar to the streaming terms of the Boltzmann equation, especially if 
the lowest order term in the expansion of the potential is used. The Wigner distribution has 
also been used to model the DBRTD [13], and the results are shown in Fig. 4, again for the 
use of a relaxation time approximation for the dissipation, and for a bias near the valley of the 
I-V relation. 

015 C 0 . O 3 

Position 
- i«m})> Momentum (nm'^) o.o — o.'i 0:2 0.3 0.4 o.a 

° ' S Applied Bias (V) 

(a) (b) 
Figure 4. (a) Steady-state Wigner distribution at the valley of the I-V curve, (b) The I-V 
curve for a DBRTD. 

The Wigner function in this simulation shows a depletion region in the cathode area, which 
arises from a contact potential drop and the tendency to form a bound state in this area. It is 
largely eliminated if a lightly-doped region is introduced adjacent to the barrier layers [13]. 
Such contact potential drops are typical of most open systems, whether classical or quantum, 
and are well-known in the Gunn effect device literature [14]. The depletion was also found 
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to go away with greater amounts of scattering in detailed studies of the role of scattering on 
the DBRTD by Frensley [15]. Generally, the cathode "barriers" will develop when there is a 
mismatch between the injection characteristics of the cathode reservoir and the dissipative 
nature of the active device region. Added dissipation or additional resistance in the active 
layer (through the lightly-doped regions) reduces the mismatch, and thereby reduces the 
depletion in the cathode-drop region. 

C. Real-Time Green's Functions 

Both the density matrix and the Wigner distribution function are equal-time functions, and 
are functions of only seven variables—either two vector postions and the time or the vector 
position, vector momentum, and the time, respectively. The energy does not enter into either 
description. This resulted from the definition that was used in (2), but there was no real 
requirement to have defined it in this manner. We could as easily have written the two wave 
functions at different times, and it is possible to define another function, which is a function 
of two times, through 

G<(x,r,x',f) = - i<¥+(x\fWx,f)> . (9) 

The equal time version of (9) is obviously related to the density matrix itself. There are in 
fact a group of real-time Green's functions, arising from the different ways in which the wave 
functions can be combined and temporally ordered. Any simulation problem must solve for 
the independent members of this group (four in number) [16]. The particular Green's 
function in (9) is the "less than" function, and is closely related to the density in the other 
distributions above. Introducing the change of variables (5), and the equivalent for the 
average time T, and the difference time x, we can introduce the energy £ (=^ca) through an 
additional Fourier transform, as 

G<(R,p,(o,r) = i J" eiP-s/*-^ <¥(R + | ,T+^F+(R - § J - \)> d3sdx . (10) 

It is clear that the x = 0 limit of (10) will lead to our Wigner distribution function, and 

Fw(R,p,T) = JdcoG<(R,p,co,r) . (11) 

Much more information is contained within the Green's function formalism, since we can 
now investigate in detail the spectral density itself, which relates the energy to the 
momentum. However, very little has done with these Green's functions in actual device 
modeling. However, they have been used to study high-field transport in homogeneous 
systems [16], and simplified versions have been used to study the DBRTD [17] for a non-
self-consistent potential and weak scattering from phonons (but introduced without resorting 
to a relaxation time approximation). Nevertheless, the results are suggestive and indicate that 
quite detailed quantum device modeling can be carried out with the real-time Green's 
functions. 

IV. Conclusions 

Over the past few years, many groups have begun to explore quantum methodologies for 
modeling real semiconductor devices (at real temperatures). Most of the various approaches 
are closely related to each other, and offer different ways of approaching any given problem. 
While none of the techniques has become well developed, all of the ones discussed here have 
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been shown to lead to useful results and have given added insight into the problem. We are 
now passing the point at which we are trying to understand the methodology, and are in a 
position where we can now confidently use the methods to study device physics. Even so, 
many problems of understanding, particularly in the quantum statistical mechanics 
interpretations still remain, and will lead to many interesting lines of inquiry in the near 
future. 
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