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Abstract 

We introduce a scaled ensemble Monte Carlo (SEMC) technique, useful for obtaining 
statistically significant results far into the low-density tails of carrier distributions. Standard 
approaches for studying this regime (weighted EMC) are based on determining single-particle 
distribution functions using a nonuniform trajectory sampling; the new technique instead 
stimulates a scaled distribution, with an energy-dependent scaling factor, but uses ordinary 
EMC weighting. This technique is flexible and simple to code. We display some results for 
bulk GaAs, with densities ranging over seven orders of magnitude, using only 10,000 particles. 

I. General System Description 

Our treatment is in the classical regime, in the absence of significant interparticle correlations, so 
the system is described formally by the usual time-dependent single-particle distribution 
function /(r,p;f) = /(x;f) [x = (r,p) is a phase space coordinate]. The distribution function 
obeys the Uouville equation: 

tf-wdfL (l) 

where H = H(x) is the time-independent single-particle Hamiltonian, and {•,•} is the Poisson 
bracket. We make the usual assumptions that collisions or scattering events take place on time 
scales much shorter than the time between collisions, so effects such as collision broadening can 
be neglected. Further, the scattering events are in fact approximated as instantaneous, so that 
intracollisional field effects can also be ignored. Under these assumptions, all important 
sources of potential and phonon scattering can be written in the form 

^ ^ ] ; o | 1 = -r(x;r)/(x;0 + J r ( x , x ' ; 0 / ( x , ; 0 d x ' . (2) 

II. Scaling Formalism 

The approach developed depends primarily on the observation that an energy- and time-
dependent scaling factor commutes with noncollisional term on the right-hand side: 

s(H,t) {//,/} = {HXH,t)f} . (3) 

Thus, we define a scaled distribution function defined by 

f(x;t) = s(H(x),t)f(x;t). (4) 
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The principal advantage of multiplying by an energy-dependent factor arises from counting 
statistics. If we are interested in the distribution function in some region about the phase space 
point x, we consider as a function pf time the number of simulation particles N in the vicinity of 
that point The fractional error in / is then l/^N , which is the fractional error in / = s~lxf as 
well. For regions of low phase-space density, N is proportional to /(x;r). Thus, for example, 
to examine regions where the phase space density is down by seven orders of magnitude from 
the maximum, one needs many times of ten million simulation particles to keep the error from 
exceeding the estimate. 

A standard solution to this problem — weighted EMC — is to define a region of interest in 
phase space, and to perform multiple simulations of those few particle trajectories which enter 
it. Usually, this is coded in a way that sharply distinguishes high- and low-density regions. If 
the density falls smoothly, there is no efficient place to draw the boundary between these two 
regions. Other, more subtle approaches have also been used [1]. 

The present approach is based upon scaling the distribution function that is simulated by EMC, 
rather than upon a weighting the EMC simulation of an unsealed distribution function. The 
choice of s determines the trajectory density. In principal, these two approaches may be 
equivalent in particular cawses. However, a weighted EMC elimiinates the usual identification 
between individual initial particles and individual trajectories sampled (in what is the Monte 
Carlo integration of the Boltzmann equation). As a result, one loses the intuitive simplicity of 
regarding sampled trajectories as individual particles of a large ensemble. In a scaled EMC, on 
the other hand, one preserves a one-to-one correspondence of initial condition to trajectory, and 
it remains possible to regard the trajectories sampled as the actual paths of individual particles. 
As we describe below, however, in order to redistribute the statistical sampling weight, one 
pays the price that the trajectories do not follow the paths of ordinary particles. 

III. Time-dependent scaling 

Particle-number conservation imposes an important constrain^on how s(H(x),t) is allowed to be 
chosen. By appropriate normalization, the total number N of simulation particles in the 
simulation of j is the integral of the scaled distribution function: 

N(t) = J ?(x) dx = J s (x)/(x) dx . (5) 

If s is chosen to emphasize high-energy regions which have low density, then during a 
relaxation, thermalization will cause a transfer of (real) electrons to lower-energy regions where 
s is smaller. If s is not allowed a time-dependence to compensate, the total number of 
simulation particles of j must decrease — degrading the statistics in / . Conversely, a heating 
mechanism would increase the number of simulation particles, improving statistical precision 
but possibly requiring undesirable computational expense. By allowing s to have a time-
dependence, we accomplish in the time domain what the energy dependence of s accomplishes 
for the energy domain: reduce variations in particle number so that fractional errors can be kept 
at an acceptable level throughout the region of interest, with the least computational effort. 

We chose a simple form for the joint energy-and-time dependence of s: we let them be 
independent factors. This can be written 

s(H,t) = exp(a(t)+yiH)). (6) 

Furthermore, we let the function y(H) = -HI kflT2 . This is appropriate for distributions / 
which are approximately characterized by effective temperatures below T [Higher 
temperatures lead to normalization problems with / . ] This choice is also convenient 
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computationally: a linear function y implies that inelastic scattering rates as well as elastic rates, 
are space-position-independent, and can be stored efficiently in look-up tables. 

/ then obeys a modified Liouville equation 

in which the "collision" or scattering term is defined by 

Equations (2) and (8) specify completely the modified scattering term (3j/3f)con. However, in 
order to implement a Monte Carlo time-evolution, one must determine scattering rates for the 
scaled problem which are analogous to the out-scattering rates r(x;f) and the in-scattering rates 
r(x,x';f) of the unsealed problem. There is some freedom in way this is done. One well-
known degree of freedom is associated with self-scattering: 

f r (x ; f ) -> r(x;f) + Ar(x;r) 1 

1 r (x ,x ' ; r ) -» r(x,x';f) + AI*(x;f) 5(x-x ' ) J ' 

where ordinarily AT is chosen to make the total out-scattering a positive constant. This is a kind 
of gauge transformation, in which the physically-significant total scattering rate is fixed, while 
unobservable components of the in- and out-scattering rates make the numerical implementation 
tractable. A more general kind of gauge transformation is made in the scaled EMC approach, 
leading to off-diagonal in-scattering rates of the form 

r(x,x') = G(x,x') + G(x) | -? (x) for x # x ' . (10) 
N 

The second term on the right-hand side leads to a kind of attractive interparticle scattering. This 
performs a role similar to that of trajectory iteration in weighted-EMC approaches: simulation 
particles entering critical regions are given greater weight, and are effectively caused to perform 
multiple traversals. However, in SEMC this weighting is implemented smoothly, rather than 
abruptly at the boundary of a region of interest, and it is accomplished with a fixed number of 
particles undergoing essentially ordinary scattering. 

IV. Simulations 

We have applied the SEMC technique to bulk GaAs semiconductor at 300 K. We used 
parameters (deformation potentials, phonon energies, band structure, etc.) that have been 
confirmed empirically in previous simulations [2]. We have specifically neglected hot phonon 
effects and Coulomb scattering, so we have essentially modeled the electrons in intrinsic GaAs 
with weak laser excitation. The system was allowed to relax for 10 ps from the initial laser 
excitation, and the result plotted below were obtained as an average of the distribution funcrion 
during the last 0.5 ps (i.e., an average was performed of results of the last 100 5-ps observation 
times). Because of the averaging procedure used, there is a kind of local averaging of the 
density, so that the standard deviation of the results from a smooth fit underestimates the 
uncertainty of the simulation results. 

Figure 1 shows the density as a function of energy of electrons in the central (T) valley. An 
ordinary (unsealed, unweighted) EMC simulation is compared with the scaled simulation using 
Teff = 400 K. Both of the simulations use the same (constant) number of simulation particles: 
104. In this valley, the SEMC simulation appears to be less smooth (i.e., to have greater 
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statistical uncertainty) at low energies. This is in fact correct: the price we pay for increasing the 
number of simulation points at higher energies is to reduce the number at low energies, wirh 
correspondingly poorer statistics. At higher energies, when the densities become smaller than 
10 - 4 , the usual EMC becomes completely unreliable, since results correspond to single 
simulation particles in a bin. The results of the two EMC simulations are consistent (in the 
sense that their difference is not statistically significant), as they must be, since they are 
mathematically equivalent in the large-iV limit The equivalence at high energies is clearly due to 
the large error bars in the unsealed EMC (not shown) which completely cover the range of 
densities to zero. There is the appearance that the unsealed EMC predicts a systematically 
higher density at high energy, since all of the high-energy points plotted are above the 
corresponding SEMC points plotted. There are two reasons for this appearance. One is the 
local (time) averaging discussed, which has the effect of smoothing a random statistical 
fluctuation into an apparent systematic one. The other is that on the semilogarithmic scale, the 
points where EMC predicts zero density (and lie below the SEMC simulation) cannot be plotted. 
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Figure 1. Central conduction valley population density. 

Figures 2 and 3 show the same comparison as figure 1, for the L- and X-valleys, respectively. 
The thresholds at zero kinetic energies correspond to satellite band minima many times ICBT 
above the T-valley minimum, and so the regime of poor statistcs is reached more quickly. The 
SEMC in each case shows the smooth exponential fall-off of a nearly equilibrated system. 

V. Conclusion 

We have shown that a scaled EMC simulation can be implemented to significantly improve the 
statistics over broad ranges of low real densities. 
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Figure 2. L-valley population density. 
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Figure 3. X-valley population density. 
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