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Abstract 
Monte Carlo particle methods have a unique role in semiconductor device simulation, since 
they allow one to solve the Boltzmann equation statistically, with the inclusion of many 
physical details which cannot yet be included completely in other approaches. Of the main 
limiting drawbacks of the technique, memory requirements and computational costs are 
much alleviated by the increasing power of computers. The problems due to statistical 
noise can in some applications be corrected by ad hoc techniques. This paper briefly 
reviews the state-of-the-art of Monte Carlo device simulation and elaborates on the future 
applications of the method. 

I. Introduct ion 

Monte Carlo particle simulation has been a powerful tool for the investigation of transport 
in semiconductors for well over twenty years. The evolution of Monte Carlo methods 
has been directly influenced by advances in computers, which have made possible the 
implementation of more and more refined physical models [1,2]. Originally, applications 
were limited to tracking the evolution of a single particle, to obtain steady-state time-
averages of transport parameters. The single particle Monte Carlo technique is adequate 
to study bulk semiconductor properties under uniform field conditions, yielding as typical 
results the distribution function, average velocity and energy, valley occupation percentage, 
and velocity-field characteristics. The single particle model is also adequate to obtain local 
information in device structures for which a potential distribution is approximately known. 

Transient and selfconsistent simulations were implemented when the memory of com
puter was increased to allow the simultaneous tracking of thousand of particles. The 
so-called ensemble Monte Carlo technique has then made possible a whole new range of 
selfconsistent applications which have required the inclusion of methods for the local eval
uation of electronic forces, e.g. Poisson's equation [3]. The early simulation models have 
treated the bandstructure with an analytical parabolic or non-parabolic approximation. 
The energy range for hot electron analysis has been considerably extended with the in
troduction of algorithms which implement numerically a complete bandstructure of the 
semiconductor material [2,4]. Initially limited to bulk material and single particle applica
tions, the full bandstructure Monte Carlo has been extended in recent years to ensemble 
selfconsistent applications and can be now run fairly efficiently on workstations [4,5]. While 
hardware improvements are making Monte Carlo applications more realistic, many efforts 
have been devoted to overcome the natural limitations of the technique, to optimize the 
algorithms and to take advantage of new hardware capabilities to introduce more advanced 
physical models. 

The flow-chart of a selfconsistent Monte Carlo device simulation is relatively simple. 
The method uses a time-dependent approach, which besides providing transient results 

192 



may also be run until a steady-state is achieved. The iteration oscillates between a block 
which utilizes the information on charge density to evaluate the electrical forces in space, 
and a block which tracks the particle movement within a given timestep. The frequency of 
forces update is chosen as a trade-off between accuracy of the physics which requires very 
frequent force recalculation, and overall efficiency. 

The particle movement is divided into two distinct parts: free flight under the influence 
of the electrical forces, and scattering events that terminate the nights. The length of the 
free flight trajectory is determined statistically, by relating the total scattering probability 
ra te to a pseudo-random number picked from a uniform sequence generated by the com
puter. Once the flight is terminated, random number techniques are again used to select 
the type of scattering, according to the relative rate strength of the various mechanisms at 
tha t particular energy, and to determine the final state after the scattering event. 

The particles are treated as classical objects obeying Newtonian mechanics during the 
free nights, and the scattering events are assumed to be instantaneous. Just a few lines 
of code are necessary to evaluate the momentum evolution during a timestep, using the 
classical law of accelerated motion. In an analytical band formulation, the energy at the 
end of the timestep is directly computed by evaluation of a simple formula. In the full 
bandstructure formulation, since the energy values are available only on a 3-D grid in 
the Brillouin zone of momentum space, the energy at the end of the timestep has to be 
evaluated by interpolation. This process is one of the major bottlenecks in the simulation, 
and innovative gridding approaches have been recently applied to implement faster energy 
evaluation techniques [6]. 

The weights of the different parts of the code, in terms of the overall CPU time, vary 
according to the implementation and running conditions. In most applications, the force 
evaluation by solving the Poisson's equation represents only a few percents of the compu
tation, when it is solved at typical time intervals of 10 fs. However, in some cases (e.g. 
high doping) the time between two Poisson solutions must be reduced to 1 fs or less, to 
avoid spurious plasma oscillations of the particle gas, and in 2-D or 3-D simulations with 
a large number of grid points, such numerical solutions may carry a considerable weight. 
When forces are evaluated bu a full molecular dynamics approach, the computational cost 
for this may be dominant, although there are multipole techniques which can be utilized 
to dramatically reduce the CPU time without sacrificing precision [7,8]. 

I I . S t a t i s t i c a l noise 

Statistical noise due to the randomness of the events and discreteness of the particles 
always affects Monte Carlo simulation results. In many cases, it is sufficient to increase the 
number of particles and average in time the ensemble averages, to improve the accuracy 
of the collected statistics for various observables. However, there are cases where a mere 
increase of the number of samples is not practical. This is typically true in the case of effects 
which depend on high energy tails of the distribution function. An example is the injection 
of carriers in the oxide of a MOSFET structure. Steady-state parameters like potential 
and carrier distribution in the device are not very much affected by these rare events, but 
the evaluation of gate currents is exclusively determined by them. It is necessary to assign 
different weights to particles in different energy ranges in order to emphasize the statistics 
of high energy tails, while preserving the overall physical charge for force evaluation. 

H the transient behavior is of interest, it is not possible to perform time averages 
and only an increase of the size of the ensemble would improve the statistics, but again, 
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this is seldom practical. Small-signal parameters of microwave devices can be determined 
for instance by Fourier transform of the transient currents. Deterministic models like 
drift-diffusion, which is not affected by statistical noise, are frequently used. They are 
also applied to study large-signal transient response of digital circuits. The Monte Carlo 
technique can be applied when drift-diffusion fails, provided that integrated quantities, 
rather than instantaneous ones, are considered. This is done by extending an idea first 
introduced by Hockney and Eastwood [2], where one keeps track of the total charge or 
current which transits through contacts. When the transient simulation is carried through 
steady-state, it is possible to identify two contributions to the cumulative charge, associated 
to the transient and to the steady-state regime [9]. Since the noise fluctuations are not 
very large for the time-integrated charge, it is possible to precisely fit in time the transient 
contribution with a polynomial or a combination of exponentials. This procedure yields 
very smooth curves for the transient currents, which can now be Fourier transformed to 
yield the intrinsic small-signal parameters. 

III . Opt imizat ion 

The core of the Monte Carlo algorithm determines the times of flight t by solving the 
integral equation —Inr = f£ \{t)dt', where r is a uniform random number between 0 and 
1, and X(t) is the total scattering rate which changes in time as the particle momentum 
and energy vary under the influence of the fields. The choice of an appropriate solution 
is quite important for an efficient algorithm. An important concept is the self-scattering, 
a fictitious event which does not affect the electron state when selected. A self-scattering 
rate can be adjusted as convenient to facilitate the evaluation of the flight time, since it 
does not affect the statical properties of the process. The simplest approach is to add a 
self-scattering rate which makes the total rate constant, so that the integral above can be 
trivially determined. 

A comparison of various techniques can be found in [10]. Self-scattering rates can be 
fixed as a function of energy, or can be dynamically adjusted in time along the particle 
trajectory. The goal of optimization of this process is to reduce as much as possible the 
amount of self-scattering while maintaining but still retaining it to guarantee that the solu
tion of the integral is always statistically correct, rather than introducing approximations. 
The constant time technique [10,11] offers a good trade-off for self-consistent applications. 
The simulation time is divided into small constant steps for all the particles, and a self-
scattering rate is adjusted to make the total rate constant in time within that interval. The 
integral is solved by adding up trivial contributions, until the equality is satisfied. 

As mentioned earlier, the determination of the energy at the end of a timestep is a time 
consuming operation in full bandstructure calculations, which can create major bottlenecks. 
Optimization can be achieved by using a tetrahedral mesh in momentum space, instead of 
a regular grid, arranged so that nodes of a tetrahedron are positioned on adjacent energy 
isosurfaces [6]. With these grids, a linear expression can be used to determine directly the 
energy for given momentum coordinates, with precision controllable by adapting the grid 
locally. While the construction of this algorithm involves a considerable initial develop
ment cost, this technique promises to be a breakthrough which should make the full band 
approaches not more expensive than analytical band algorithms. 

I V . Supercomputa t ion 
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The advent of supercomputers has offered new opportunities to improve the performance of 
Monte Carlo codes and increase the size of the problems to be solved. The particle transport 
has an inherent parallel behavior which can be exploited, but the main obstacle is the fact 
that the histories of different particles can be very different due to the randomness of the 
processes, and such a difference can be quite emphasized in the case of sharply nonuniform 
structures. 

Vectorization techniques can be very effective for bulk analysis, since it is sufficient to 
follow particles from one scattering event to another in parallel. The particle histories are 
equalized by sacrificing synchronism, which is not necessary for averaging. Synchronism 
must be maintained for self-consistent algorithms, because forces must be evaluated at 
specified intervals. Applications using an ensemble constant time approach for the flight 
time evaluation, yield a vectorization speed-up between 3-5 on a CRAY Y-MP supercom
puter [11], where the maximum possible speed-up is about 10. Reports by several groups 
indicate similar speed-up for different Monte Carlo implementations. Comparisons in this 
area are extremely difficult, since when the efficiency of a code is improved, the achievable 
vectorization speed-up tends to decrease. 

Parallelization can also be very advantageous for bulk calculations, since the particles 
are substantially independent. For more complicated self-consistent models, performance 
depends on the actual architecture of the hardware and on the strategy used to balance 
the load on the processors. Work in this area is still largely experimental, reflecting the 
immaturity of parallel computers and compilers. Parallelization is particularly appealing for 
3-D simulation, because realistic applications require a very large number of particles [12]. 
Balancing of the load between processors is very important, because for massively parallel 
applications even a small percentage of non-parallelizable code may make the computation 
inefficient. 

The future evolution of parallel architectures will have an important influence on Monte 
Carlo applications. This is particularly true for the most advanced applications which 
require the storage of large tables. The most memory intensive model is at the top of 
the hierarchy, where tables for the full bandstructure and momentum-dependent scattering 
rates must be stored and need to be equally accessible by all the processors. The information 
is only read by the processors during the simulation, since these tables are not changed. 
Therefore, for efficiency, such tables should reside in a shared memory region which can 
be quickly accessed by all nodes with uniform times, rather than being distributed in local 
memory areas appended to the processors or being completely copied in each of these areas, 
to limit storage requirements. The remaining compelling memory requirements are related 
to particle attributes, like position and momentum, which are continuously updated, and 
position dependent data (charge, fields) for large grids, particularly in 3-D. The main 
issue is to efficiently handle the communication between blocks of distributed memory. A 
logical storage scheme, in the case of distributed memory, is to map particles and grid 
nodes of domain subregions onto separate processors, trying to balance the number of 
particles per processor, adaptively throughout the simulation. As particles cross boundaries 
between subregions, they should be reassigned to new processors. For the determination 
of charge on grid nodes and the subsequent solution of Poisson equation, a small amount 
of communication is necessary between processors corresponding to physically contiguous 
regions. Much more challenging is the implementation of molecular dynamics, where in 
principle all processors need to communicate with each other. The optimal solution for a 
Monte Carlo code would be to have only shared memory available. In such a way it would 
be possible to load particles on fixed processors, regardless of position. Provided that each 
single processor can address a large shared memory necessary for the applications, still 
great challenges remain in designing system software and compilers for such a system. 
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V . Force Evaluation 

The numerical solution of Poisson's equation only provides forces in a quasistatic approx
imation. In some applications this is not sufficient. It has been shown that to simulate 
fast phenomena associated with the transport of carriers generated by femtosecond laser 
pulses, the full Lorentz force must be evaluated [13], where the electric and magnetic fields 
should be obtained by solving the time dependent Maxwell's curl equations (note that we 
refer here the fields are generated by the fast moving charge particles, not to the laser 
radiation which is absorbed by the sample) Implementation of the algorithm can be very 
suitable to parallel computation and actually cheaper than solving the Poisson's equation 
for multi-dimensional simulations [12]. 

It is not clear at which frequency range the inclusion of the magnetic field begins to be 
necessary. In the simulation of general microwave devices, it should be possible to simply 
substitute Poisson's equation with the time-dependent wave equation for the retarded po
tential, which has the same space-dependent terms, to account for the displacement currents 
(in 1-D the displacement current contribution can be integrated and applied as additional 
boundary condition to Poisson's equation). However, in the THz regime the wavelength of 
the electromagnetic field in the doped semiconductor layers can be comparable or smaller 
than the dimensions of the active regions, 

In other cases, the solution of Poisson's equation on discrete points may not be accurate 
enough to resolve the coulomb interaction between charges. Reduction of the mesh size 
may not improve much the situation, because the number of simulated carriers is fixed. A 
molecular dynamics can be used to calculate the force acting on a particle by adding the 
coulomb potential due to all the other charges. This approach would automatically include 
the electron-electron interaction effects, which can be very important in the case of high 
concentrations. The major computational obstacle is in the fact that the full molecular 
dynamics evaluation of the forces involves a number of operations of order N2, where N 
is the number of particles. In order to develop practical algorithms, it should be possible 
to apply multipole techniques, which have been extensively used to calculate molecule 
configurations, ionic systems [7] and capacitances in complicated VLSI interconnect layouts 
[8], to name a few applications. With accurate calibration, multipole algorithms only 
require a number of operations of order N. The idea is to consider particle-particle forces 
only within an appropriate neighborhood, and treat interactions from longer range particles 
through interpolated forces on a mesh with increasing coarseness at farther distances. 

In many applications it is common to simulate only particles in a relatively small cell of 
a periodic structure, or a sample of a larger device. When the Molecular Dynamics method 
is implemented, the interactions with charges in other regions, which are not simulated, 
cannot be neglected. If one assumes that the simulated geometric sample is one element 
of a periodic structure, every particle in the simulated cell corresponds to a "replica" in 
each of the other cells of the periodic domain. The replicas of a given particle constitute 
then a "lattice" of charge, and special techniques must be applied to get a convergent sum 
of the interactions keeping down the computer time requirements [14]. For simulation of a 
bulk material, one has to consider 3-D lattices of replicas, 2-D and 1-D lattices for 1-D and 
2-D device simulations, respectively, and in the case of a complete 3-D device simulation 
no replica has to be taken into account. Although more accurate than Poisson's equation, 
a molecular dynamics algorithm is still providing forces in an electrostatic approximation. 

V I . Hybr id techniques 

196 



Monte Carlo techniques have found many useful applications beyond full self-consistent 
simulation of devices. Assuming that the correct solution of the Boltzmann equation is 
obtained, Monte Carlo simulations are often used to parameterize other models. Field 
dependent mobility and diffusion coefficient are used in drift-diffusion applications, for 
instance, and a number of other parameters are extracted to calibrate hydrodynamic and 
energy transport models. Although the Monte Carlo results should not always be trusted 
as completely exact, the potential problems in these schemes are more due to the fact that 
parameters, obtained for a bulk with uniform field, are often employed for nonuniform field 
condition, which can be considerably different. 

The Monte Carlo approach is also used as a postprocessor using the potential profile 
obtained by a drift-diffusion or hydrodynamic approach. This is certainly a valid approach 
for large devices, where not only a drift-diffusion solution is acceptable, but also a full self-
consistent Monte Carlo solution would be impractical. By tracking particles simulated with 
Monte Carlo in the fixed potential, it is possible to evaluate high energy effects (injection 
into oxide, impact ionization) which are not well account for in simpler models. The 
advantage of a postprocessor is in the fact that one can use very efficient vector and parallel 
algorithms, since the tracked particles are essentially independent in nonself-consistent 
simulations. 

A recent application of Monte Carlo simulation involves the calculation of tables for 
a scattering matrix technique [15]. The Monte Carlo procedures provides the possible 
outgoing momentum values, with associated probabilities, for a given incoming momentum 
into a thin slab of the device. By partitioning the device into slabs and matching the 
solutions at the interfaces with the momentum scattering tables, it is possible to get a 
solution which provides all the information of a self-consistent Monte Carlo, but with 
smooth solutions without the noise. Because of this, rare events should be easier to observe 
directly. Multi-dimensional applications are also possible with this technique. 

V I I . Improved Physical Models 

A shortcoming of Monte Carlo models is due to the unavailability of many constants which 
are necessary to determine the scattering rates. A typical example is represented by de
formation potentials of phonon scatterings. The usual procedure is to choose a set of 
deformation potentials which fit experimental data for steady-state velocity-field charac
teristic curves. Unfortunately, many slightly different sets can be found which provide a 
reasonable fit. Measurements of some important parameters, like the intervalley deforma
tion potential for transitions between T and L valleys in GaAs, have been attempted, but 
the data reported by various groups are too contradictory to resolve the uncertainty. 

The solution is to formulate new models which are based on first principles and rely 
less on parameter fitting. Electron-phonon scattering is usually treated with a simplistic 
dispersion relation, and is defined on arbitrary partitions of the Brillouin zone centered 
around energy minima (valleys). At high fields, the validity of this picture is questionable. 
A complete phonon model with accurate dispersion relations is needed, but the computa
tional complexity is formidable. A consistent approach should treat both the bandstructure 
and the electron-phonon interaction on the same footage. 

Electron-phonon matrix elements of the true Haxniltonian axe equivalent to the matrix 
elements of a pseudo-Hamiltonian, as long as certain conditions on the true potential are 
met . Several calculations have been performed for semiconductors using local and nonlocal 
empirical pseudopotentials. These are assumed to be the sum of spherical potentials which 
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move rigidly with the atoms [16,17]. Another approach uses the ah initio pseudopotentials, 
which avoid self-consistency problems of the empirical approach by approximating the 
change in charge density when the atoms are displaced [18]. Computations using the 
Harris functional approach have provided the deformation potentials for phonon scattering 
in Si, throughout the Brillouin zone. A significant result is the evidence of the variation 
of deformation potentials with initial and final state wavevector. The total deformation 
potential exhibits a high degree of dispersion, especially for transitions away from the valley 
minima [18]. These results have significant implications for improving the predictive power 
of high-field Monte Carlo simulations. 

VIII . Conclusions 

Monte Carlo techniques for device simulation are undergoing dramatic developments due to 
the recent evolution of available computational platforms. Pull bandstructure applications 
are already practical for use on top of the line workstations. New optimization techniques 
for the determination of momentum space trajectories, new approaches for electron-phonon 
interaction which remove much of the uncertainties of current models, and emerging ap
plications on parallel architectures, should contribute to provide, in the next few years, 
accurate and efficient simulators with sufficient predictive capability in the high field trans
port regime to meet the needs of CAD designers of new generations of integrated devices. 
Monte Carlo techniques have already found a very important role as tools for the calibra
tion of simpler models, and as postprocessing complements of conventional simulators, to 
quickly assess the importance of hot electron phenomena affecting device reliability. 
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