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Abstract 
In this paper we present four different SOR variants for solving the 3D Poisson equation on 
an array of transputers. The performance of all variants has been tested and compared in 
terms of number of iterations and global computation lime for different configurations of the 
transputer system. The parallel performance of the algorithms has also been evaluated and 
compared to a theoretical speed-up model. 

I. Introduction 

The realistic semiconductor device simulation (both classical, Monte Carlo or quantum 
mechanical) in many cases requires a 3D solution of the Poisson equation and leads to 
enormous problem sizes [1]. The single processor implementation of the corresponding 3D 
codes is limited by both the processor speed and the huge memory-access bottleneck. In the 
foreseeable future a significant low cost improvement in computer performance will only be 
available through Multiple Instruction Multiple Data (MIMD) systems (many of them 
transputer based), for which the necessary speed-up derives from the use of parallel 
processors sharing a large distributed memory. The point and block Successive Over 
Relaxation (SOR) methods are promising candidates for 3D parallel implementation on such 
computers. Although the recursive character of the original SOR method seems to be a 
serious impediment [2], for a large class of linear systems arising from finite difference, and 
in particular cases [3] from finite element approximations of the Poisson equation, the 
multicolour ordering of the grid points leads to easily parallelizable versions of the SOR 
method [4,5]. 

Here we present a systematic approach to the parallel implementation of scalable point and 
block black/red 3D SOR Poisson solvers on a 2D arrays of transputers for the purposes of 
semiconductor device simulation. Utilising the power and the flexibility of the Parsylcc 
Supercluster Model 64 a wide range of experiments have been made both to compare the 
performance of the different SOR variants and to choose the optimum 2D transputer 
configuration for mapping 3D problems. The recently developed detailed performance theory 
[6] has been applied to underpin the experimental solver design. 

II. Model Problem and Partition 

The Poisson equation used in the semiconductor device simulations 

dx2 dy2 dz2 e K) 

may be nonlinear or linear, depending on whether the charge density p is a function of the 

electrostatic potential "F or not. In the drift-diffusion and the hydrodynamic simulation 
approaches it is mainly used in a nonlinear form . In Monte Carlo and quantum mechanical 
simulation however it is usually enough to solve the linear Poisson equation. 
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In this study for simplicity and clarity we consider the linear 3D Poisson equation in a unit 
cube Q with Dirichlet boundary conditions. A uniform grid is used to discretize the region Q 
into fth. The approximation of the second-order derivatives by the second-order accurate 
central differences on &b leads to a set of nxnxn algebraic equations 

for i,j,k = 2,3, ...n-1, where n is the number of points on a side of £2h» and b is a coefficient 
depending on n.. In most of the following experiments yf was set to one, p was set to zero and 
the initial conditions were ^ = 0. 

Fig. 1 Mapping of a 3D semiconductor device Fig. 2 Partition of a 2D discretization grid on 
simulation domain on an 2D array of a 2D array of transputers 
transputers 

Although it is intuitively clear that the best environment for solving topologically rectangular 
3D problems is a 3D array of processors, we are restrict to a 2D array of NxM transputers. 
This reflects the connectivity of transputers, which have only four links, and offers a simple 
way of mapping a topologically rectangular 3D grid, where the overlap of subdomain 
boundaries is essential. The transputers have a natural ordering p = l,2,...N and q = 1,2,..M 
Fig. 1. One additional 'root' transputer performs all management and synchronisation. The 
grid is partitioned into NxM subdomains along two of the spatial dimensions (ij) and each of 
the subdomains involves all corresponding points in the third dimension k.. Examples of slice 
(IxM), rectangular (NxM) and square (NxN) partitions are given in Fig. 2. A universal 
communication harness GARH [6] supports all necessary global and local communications. 

i n . Back/Red SOR Variants 

The implementation of the Point SOR method with Natural ordering in i,j directions on each 
processor may in many cases cause divergence for problems which behave well in a serial 
implementation [7]. This may be avoided if a black/red SOR variant is considered. In this 

approach each partition sub domain Gh' is decomposed into two further subdomains - black 
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QhP'q and red £2h
p'q. The nodes in the black and red subdomains are updated 

simultaneously and the overlapping boundaries are exchanged before each updating. 

When a 2D array of processors is used, it is enough to apply the black/red ordering only in the 
ij plane which leaves some degree of freedom in the k direction. To explore this freedom we 
consider four different parallel SOR schemes namely: 

PSORBRjjNk - Point SOR with Black/Red ordering in ij direction and Natural ordering in k 
direction. (Fig. 3 a) 

PSORBRijk - Point SOR with Black/Red ordering in all three directions (Fig. 3 b). 

PSORBRjjAk - Point SOR with Black/Red ordering in ij direction and Alternating directions 
in k direction. 

BSORBRyTk - Block SOR with Black/Red ordering in ij direction and tridiagonal equations 
solution in k direction. 

dffiffZ 

9 • D 

n • 

Fig. 3 Black/red ordering in the 3D case, 
(a) full black/red ordering (b) 
black/red ordering only in i,j plane 

Table 1 

Mesh size n 
10 
20 
30 
40 
50 

Natural 
ordering theory 

16 
32 
47 
62 
76 

PSORBR 
15 
32 
47 
61 
74 

PSORBRN 
15 
32 
47 
61 
74 

PSORBRA 
15 
30 
43 
56 
70 

PSORBRT 
11 
22 
33 
41 
51 

Table 2 
Mesh size n 

10 
20 
30 
40 
50 

PSORBR 
with o)e 

0.087 
0.635 
2.184 
5.450 
11.278 

PSORBRN 
with cofj 
0.093 
0.635 
2.184 
5.539 
11.582 

PSORBRN 
with coe 

0.087 
0.635 
2.184 
5.450 
11.278 

PSORBRA 
willi (oe 

0.087 
0.595 
1.998 
5.003 
10.668 

BSORBRT 
with coi, 
0.106 
0.677 
2.346 
5.888 
12.163 

BSORBRT 
with C0e 

0.077 
0.552 
1.985 
4.828 
10.169 

The main disadvantage of the black/red ordering with all variants described above is that the 
natural ordering SOR theory [7] does not hold, which makes it difficult to estimate the 
optimum relaxation coefficient 0) a priory. In order to compare more precisely our four 

different SOR variants, experimental optimum values for coe have been found by using a one 
dimensional minimum search based on the Golden Section method. In Table 1 the numbers of 
iterations providing an accuracy 8=0.001 are given for both coe and the theoretically predicted 
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relaxation coefficients coi, [7]. As can be expected the block variant BSORBRT leads to a 
significant reduction in the number of iterations but at the expenses of an increasing number 
of calculations per grid point. This point becomes clear from Table. 2 where the execution 
times in seconds are compared when all 64 transputers of a Parsytec Super Cluster were used, 
configured in an 8x8 array. 

IV Speed-up analysis 

To evaluate the parallel potential of the considered SOR variant and the optimal processor 
configuration we use the relative speed-up defined as the ratio between execution times on an 
array of processor and the execution time on a single processor. It is obvious that according to 
this definition the maximal available speed-up is equal to the number of processors on which 
the algorithm runs. The speed-up model developed in [6] for scalable 2D linear solvers 
implemented on an array of transputers was extended to the 3D case and takes into account 
the details of the solution domain partition, all global and local communication overheads and 
the computation time in the linear and nonlinear case. All parameters of the performance 
theory have been extracted from independent measurements. 

200 

150 

E3 8x8 calculculation 
M 8x8 boundary exchange 

E 
- 100 H 

50 H 

T 
10 20 30 40 

Problem size n 
20 30 40 

Problem size 

Fig. 4 Speed-up as a function of the problem Fig. 5 Balance between calculation time and 
size for different configurations of 64 local communication time in the case 
transputers (PSORBRN variant) of 8x8 transputers (PSORBRN) 

The measured and calculated speed-up for three different configurations of 64 transputers is 
given in Fig. 4 for the PSORBRN variant as a function of the problem size. The picture shows 
very good agreement between the measured and predicted performance even in the finest 
details. The square partition which minimises the local communications shows the best 
performance for problem sizes n which are divisible by the transputer array size. Fig. 5 gives 
an idea for the balance between the local communication and calculation time for a single 
iteration in the 8x8 case. Finally Fig. 8 illustrates how the performance theory may be used to 
estimate the expected speed up for a particular problem size (/r=50) mapped on a large 
number of transputers. It is clear that for large transputer systems the BSORBRT variant is 
superior to all other variants because of the higher calculations/ communications ratio. 
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Fig. 6 Speed-up of 50x50x50 problem on a 
large array of transputers 
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V. Conclusions 

Four variants of a black/red SOR method for solving the 3D Poisson equation on array of 
transputers have been implemented and tested. The behaviour of PSORBR and PSORBRN 
variants are very similar in terms of iterations required to achieve a certain accuracy. The 
third point variant PSORBRA slightly reduces the number of iterations. The block 
BSORBRT variant reduces the number of iteration by more than 25% but at the expense of a 
larger calculation time per iteration. Although for a medium size transputer system all four 
variants are very similar in terms of global computational time, our speed-up analysis shows 
that on a large array of transputers the advantages of BSORBRT will become more 
pronounced. 
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