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Abstract 
In the numerical simulation of semiconductor lasers a fast accurate method is essential for the 

solution to the Helmholtz equation. Various algorithms are considered for this purpose in terms of 
speed, efficiency and accuracy and a new algorithm is developed based on the effective index method 
with a novel solution to the algebraic eigenvalue equation. The algorithm is found to be highly efficient 
for all modes. 

I. Introduction 
As laser structures increase in complexity it becomes more important to simulate their behaviour 

in order to understand phenomena dependent on structure and hence optimise their performance. As 
manufacturing techniques improve the buried heterostructure (BH) device is likely to grow in 
importance. A typical BH device is shown schematically in figure 1 in which the InGaAsP active region 
is surrounded by the wider band gap InP on all sides. In the simulation of these structures the wave 
equation must be solved to obtain the optical intensity of each lasing mode and the aim of this paper is 
to investigate the most efficient way to solve this equation. 

Figure 1 Device Structure 

II. Modelling 
Assuming TE modes dominate then the wave equation may be given in scalar form as 
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where e(x,y) is the permittivity (which may be complex due to gain or loss), Ex is the optical field, k0 is 
the free space wave number and (3 is the propagation constant. This equation must be solved in two 



dimensions for the structure in figure 1. Of the efficient methods that exist the effective index method 
[1] is the most commonly used, however as the active area decreases in size and the solution 
approaches cut-off the accuracy deteriorates [2]. The weighted index method [3] is an alternative 
approach which attempts to increase the accuracy of the solution whilst avoiding the complexity of a 
two-dimensional method. 

The Weighted Index Method 
The weighted index method is an improvement on the effective index method as it uses a 

weighted mean of the permittivites in the y direction for each node in the x axis and a weighted mean of 
the permittivities in the x direction for each node in the y axis. This is described with reference to figure 
2. 
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Figure 2 The Weighted Index Method 

The best trial solution is found for 

E = F(x)G(y) (2) 

F and G are complex functions of the single variables x and y respectively and satisfy the ordinary 
differential equations 

£F 
dx2 

d2G 

dy2 

+ KFF = p2F 

+ KGG = (32G 

(3) 

(4) 

where (3X and (L are the propagation constants of the differential equations. Equation 3 represents a 
cut along aa' and equation 4 represents a cut along bb'. There are p nodes along the aa' and q nodes 

along bb'. Kp is the weighted mean of e(x, y)k2 for each nodal value xp. The mean is taken along the y 
direction using weights Wyq, i.e. 
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K P = ^ W A (5) 
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In a similar fashion KQ is given by 

Ko=^JXeM (6) 
p 
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The weights are defined optimally as 

,=JV'F2.dx (7) 
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where F and G have undergone the normalisation 

J_V=1 (9) 

£ G 2 = 1 (10) 

The best value of P2 is given by the Rayleigh quotient [3] 

p q 

The two one-dimensional wave equations (3,4) are coupled via the weighting factors and are 
solved alternately until the value for p converges. 

The algebraic eigenvalue equation 
With both the effective and weighted index methods a one dimensional algebraic eigenvalue 

equation must be solved. 

AE = p2E (12) 

where A is complex and tridiagonal and the optical field E is a column vector. If a non-uniform grid is 
used then A is unsymmetrical and must be symmetrised using a similarity transformation. The 
eigenvalue and eigenfunction of the coefficient matrix A give the propagation constant |3 and the 
corresponding optical field E respectively. A new highly efficient method is described next 

Evaluation of the characteristic polynomial 
A very fast method to obtain any required eigenvalue is the evaluation of the characteristic 

polynomial. A trial value of the eigenvalue is used in a Sturm sequence which can then be used to locate 
the required eigenvalue via bisection. For any trial eigenvalue X, the Sturm sequence is defined as :-

p0(X) = l 

Pi(X)=(aii-X)pi.1(X)-a2pi.2(X) ( 1 3 ) 
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The number of changes in sign between consecutive numbers of the sequence is equal to the 
number of eigenvalues smaller than X. The advantage of this method is its flexibility in that it allows all 
the eigenvalues to be found in a given range however the disadvantage is it cannot cope with complex 
matrices. 

An alternative method is inverse power iteration with successive eigenvalue refinement It 
consists of iterating around the equation 

( A - ^ I ) x i + 1 = k i X i (14) 

where lq is chosen such that [|xi+,L = 1. ^j is adjusted on each iteration via 

(15) 

A linear system of equations must be solved at each step. This algorithm is fast and can cope with 
complex eigenvalues and eigenvectors. The main disadvantage is that the method requires good 
approximations to both the eigenvalue and the eigenvector of the problem to initialise. However 
advantage can be taken of the fact that the change in imaginary components of the permittivity is much 
less than the change in real components. This is due to the BH laser being index-guided in both lateral 
and transverse directions. To obtain a good initial approximation to the complex problem the imaginary 
components can be ignored and the real problem can be solved via the evaluation of the characteristic 
polynomial for the eigenvalue and an inversion performed for the eigenvector. The results can then be 
used to initialise the complex inverse iteration with successive eigenvalue refinement algorithm to obtain 
the complex solution. A flowchart of the algorithm is shown in fimim ^ 
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no 

Figure 3 Flow Chart of Operation 

141 



III. Results and Discussion 
Results are shown in figure 4 for an InGaAsP/InP device using the effective index Method (EI), 

the Weighted Index Method (WI) and a two-dimensional solution (2D)[2]. The fundamental and first 
order mode indices are calculated for varying channel widths (W). In this example where the core is 
0.35 microns thick the effective index method becomes significantly in error when the width is less than 
two microns i.e. when the active region area is less than approximately 0.6 |j.m2-

The significance of the above results will now be considered with respect to the design of BH 
lasers. One of the most important characteristics of these devices is the power at which the first kink in 
the light-current characteristics occurs. This kink is due to the first order mode achieving gain and 
commencing lasing. The above results indicate that for accurate determination of this lasing power the 
EI method is insufficient and the WI method is preferred. An interesting implication of die results given 
in figure 4 is that the EI method will always underestimate the optical power at which the first order 
mode starts to lase and the weighted index method will always overestimate this power. This is a direct 
result of the effective index method overestimating the mode index and hence overestimating the optical 
gain. Equivalently, the weighted index underestimates the mode index and thereby underestimates the 
optical gain. This has important implications for device engineers. If a laser is designed to have a 
minimum output power at which the first order mode starts to lase, then using both the WI and EI 
methods, they can be reasonably sure that the experimental power will be bounded by the results 
calculated from the two methods. 
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