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Abstract 
In this work, we present a general 2-dimensional spherical harmonic formulation of Boltz-
mann's transport equation. Until recently, numerical implementation of this approach 
has been discussed for either 1-dimensional geometries, or only a few of the spherical har­
monics [1, 2]. In this paper, a formulation is presented that includes an arbitrary number 
of spherical harmonics. 

I. Introduct ion 

Device modeling by direct solution to the Boltzmann transport equation is usually not 
performed because of dimensionality problems and difficulties in evaluating the collision 
integral. To directly account for 2-dimensional device operation with the Boltzmann equa­
tion, we would normally have to perform calculations in 5 dimensions (2 dimensions in 
real-space and 3 dimensions in momentum-space). To overcome this 'curse of dimension­
ality' a new approach to solve the BTE in device models is being developed which uses a 
spherical harmonic (SH) or a Legendre polynomial expansion. 

II. Indefinite Spherical Harmonics Expans ion 

One of the reasons why we are interested in this method is that it gives us the ability 
to produce differential-difference operators for the evaluation of the collision integral to 
all orders in the expansion. Finding expressions for the rest of the BTE operators, how­
ever, involves some work. To solve the 2-D BTE to high-order accuracy, the distribution 
function is expressed in terms of an infinite spherical harmonic expansion with unknown 
coefficients that depend on energy and position: 

/ ( r , k ) = £ / r ( r , e ) > T ( M ) (1) 
lm 

Yl
m(6, <t>) are the spherical harmonics[3]; / / " ( r , e) are the coefficients which are 

to be determined; / = 0,1,2, ; and for each /, the superscript m = —/, —/+ 
l , . - , 0 , 7 - 1 , / . 

The spherical harmonics give the angular dependence of the distribution function in mo­
mentum space, and the coefficients provide its magnitude. The SH-numerical formulation 
allows us to account for the angular dependence of the distribution function in momentum 
space (9, </>) analytically, thereby reducing the dimensionality of our calculations from 5 
to 3. 
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I I I . SH Formulation to Arbitrari ly High Order Accuracy 

The objective is now to determine the unknown coefficients / / " ( r ^ ) , which can be used to 
construct the distribution function. Furthermore, to minimize the possibility of truncation 
errors in the SH approach, we have developed a technique to determine the coefficients to 
arbitrarily high order. The basic idea behind the approach is to automatically generate 
a system of equations for all the unknown SH coefficients //™(r, e), and then solve the 
system and construct the distribution function using the above summation. 

To generate this set of equations, we first substitute the above summation into the BTE. 
Next, we project the BTE onto each of the SH basis functions. The projection onto the 
/, m'th SH basis function, which yields an equation for the /, m'th coefficient, is illustrated 
by the following operation, 

fdSlYTiO,*) Iv* .V r -^(r) .V 4 - d_ 
dt fr(r,e)Yr(0,J>)\ = O 

By performing a similar projection onto each of the SH basis functions, the angular 
dependence of the distribution function is integrated out, and an infinite system of coupled 
equations is generated for the unknown coefficients. 

In principle, this set of projections could be performed as is, leaving a system of differential-
difference-integral equations for the unknown coefficients /™(r ,e) . However, the initial 
substitution of the SH expansion into the various terms of the BTE gives rise to many 
nonlinear products of SH basis functions. Projecting these nonlinear products by per­
forming the indicated integrations would become unwieldy. Furthermore, since an infinite 
SH expansion is present, each equation would contain an infinite number of terms, and 
each equation would therefore be directly coupled to all the other generated equations. 

To simplify the system, we take advantage of the SH recurrence relations[3]. These re­
lations allow us to re-express all nonlinear products of SH basis functions in terms of 
linear combinations. Once each term in the BTE is expressed as a linear combination, 
we can take advantage of the orthogonality of spherical harmonics and easily perform the 
projections indicated by Eqn. (2). 

IV. General ized S y s t e m of S H Equat ions 

After using recursion and performing the indicated integrations, we obtain the remarkable 
result that almost all of the infinite terms in each equation vanish identically due to 
orthogonality. Furthermore, we find that the coupling between equations is only through 
neighbors. Another extremely useful result is that each equation has an identical form. 
The system can therefore be automatically generated to arbitrarily high order and then be 
solved numerically. The equation for the /, m SH coefficient is given below. The equation 
for any of the other SH coefficients is obtained by appropriately changing the value of the 
indices /, m to other allowed integers: 
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where v(e) = * m?; 7 ' = dj/de, and 7 represents the dispersion relation; the sum is over 
the 2 directions in the x — z plane; and the operators a have been defined as, 
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where af1 = x/^rr- Due to the need to consider self-consistent boundary conditions 
in multi-dimensional problems, it is necessary to produce a set of 2nd order equations 
from this set of 1st order equations. Before doing this, however, it is possible to eliminate 
mixed partial derivative operators such as d^dx that would occur from such a substitution 
procedure by introducing the guage transformation, 

£ —+ e — e<j){x) = H (7) 

as discussed in Ref. [2]. Here, the effect of the transformation is to produce the same set 
of equations as Eqn. (2) except that now, the energy derivatives are no longer present. 
This is because the derivatives with respect to position now have a new meaning, i.e. they 
are evaluated for fixed values of H. 

V . Resul t s 

We have solved this generalized system for the 2-D space-independent case. This system 
is truncated, discretized and solved numerically. Solving the space independent BTE to 
10 orders requires less than a minute of CPU time on a Sun4 work-station. Fig. 1 shows 
the SH coefficients coresponding to / = 0,2,4 for a 100— electric field 45 degrees from the 
Pz axis in the 111 direction. Fig. 2 shows a comparison of this result with the case of the 
electric field in the direction of the pz axis. The purpose is to demonstrate how different 
SH coefficients become important to resolve the 2-dimensional angular dependence of the 
distribution function. Calculation of the isotropic coefficient remains the same, while the 
magnitude of higher order coefficients change in response to the changing values of the 
spherical harmonics. It is believed that some numerical error is present at low energy for 
the higher order coefficients as it was expected that the shapes of the coefficients of the 
same order in / should be the same. 
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Fig. 1. SH Coefficients corresponding to 1-0,2,4 for a 100 kV/cm 
electric field in the 111 direction. 

•i—i 

ID 

.a 
<D o -001 b-
u 

.0001 
0 

— 0 Degrees 
- 45 Degrees 
I i i i 1 i i I 

.2 .4 .6 .8 
Energy (eV) 

Fig. 2. A comparison of SH coefficients calculated for two different 
field orientations. 
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VI. Summary 

We have developed a new method for solving the BTE for 2-dimensional geometries. 
The method reduces the dimensionality of the problem from 5 to 3. Theoretically, the 
orientation of the coordinate system should not affect the calculation of the distribution 
function, however in practice with the direct method, a small numerical difference is 
noticed. 
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Fig. 3 . Isotropic coefficient / 0 for different homogeneous applied electric 
fields. Comparison of the LP calculation with the Monte Carlo method was 
excellent up to energies higher than 2eV. 
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