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I. Introduct ion 

We present a new technique for solving the Hydrodynamic(HD) equations in submi­
cron device simulations. This method is extremely stable, quickly converges even with 
poor initial guesses, and agrees with Monte Carlo(MC) calculations. In addition, this 
new method is easy to code for 2-D device simulation. We have applied the new method 
to simulate 2-D MOSFETs as well as SOI devices. 

To our knowledge, no agreed-upon HD model has emerged as the basis for a stan­
dard device simulator. The lack of an industry-standard CAD tool can be attributed 
to the difficulties in obtaining an accurate, numerically stable, and rapidly convergent 
solution to the HD equations. We have developed a new robust algorithm for HD device 
simulation that overcomes existing difficulties. We formulate the HD equations into self-
adjoint forms with a new set of Slotboom-like state variables. The discretizations result 
m a diagonally dominant coefficient matrix for each HD equation. Consequently, the 
convergence of each equation is guaranteed for any initial guess when iterative solution 
methods are employed. Our discretization technique resolves the rapid spatial variations 
which may occur in carrier densities and carrier temperatures. As a result, stability of 
the HD solution is improved. Furthermore, a fixed-point iterative method is employed 
to determine the solution of each discretized HD equation. A direct solution of a matrix 
equation is therefore avoided. In addition, the method requires little memory, and is 
well-suited for parallel computations. 

II. T h e H D M o d e l 

The HD equations are obtained from a standard HD formulation [1]. 
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Here, ^ is the electric potential; n and p are the electron and hole densities 
respectively; D is the net doping concentration; X is the electron current 
density; R denotes the recombination process; un is the average electron en­
ergy and S'„ is the electron energy flux; E is the electric field; rnw is the 
energy relaxation time for electrons; u>0 is the average carrier energy in ther­
mal equilibrium; /u„ is the electron-temperature-dependent mobility; Dn is 
electron temperature-dependent diffusivity; Tn is the electron temperature; 
m* is electron effective mass; Vdn is the electron mean velocity; Q is the heat 
flux. (We note that, in an effort to be concise, only the HD equations for 
electrons were shown. However, our calculations include the self-consistent 
solution of the hole and electron HD equations.) 

The typical approach at this point is to solve the above system of equations by using 
n, Tn as the unknown state variables. However, the current-continuity and the energy-
balance equations under this approach may give rise to numerical difficulties such as 
stability problems and spurious spikes in average electron velocity. To overcome these 
numerical problems, we take another approach by first defining a new set of Slotboom-like 
state variables. Then, we transform the HD equations into self-adjoint forms with these 
new variables. A new Scharfetter-Gummel-like discretization scheme is then employed to 
resolve the rapid variations in n and Tn. The resulting matrix equations are diagonally 
dominant and exhibit excellent numerical properties. 

III . T h e N e w M e t h o d for So lv ing H D Equat ions 

A. Slotboom-Like Variables for the HD Model 
We define a new set of Slotboom-like state variables u and gn for electron density and 

electron temperature: 

Tn = gn e x p ( ^ n / a r ) , aT 5 •finnkB 5 q 

where ^>n is the electron quasi-Fermi potential and Ti is the lattice temperature. 

B. The Self-Adjoint form of the HD model 
Substituting eqns. (8)(9) into (4), and eqn. (10) into (5) respectively, the electron 

current density and electron energy flux in terms of the Slotboom-like variables u and gn 

are as follows: 
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Eqn. (11) can be further simplified to Jn = -?/xnn V 0n- The steady state HD model 
can now be described by a system of self-adjoint equations. This system can be obtained 
by appropriately substituting eqns. (11)-(12) into eqns. (l)-(3). 
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It is clear from the above expressions that the Poisson, the current-continuity and the 
energy-balance equations are each self-adjoint differential equations with respect to the 
variables <j>,u and gn. It is also interesting to note that when Tn is equal to TL, the 
above new expressions for the Poisson and current continuity equations reduce to the 
DD model[2]. 

C. Discretization Scheme and Iterative Method for HD Equations 
A Scharfetter-Gummel-like method is employed to discretize the current-continuity 

equations and the energy-balance equations. The discretizations result in a diagonally 
dominant coefficient matrix for each HD equation. A fixed-point method is applied to 
solve the system of discretized HD equations. Due to the property of diagonal dominance, 
the convergence for the solution of each HD equation is guaranteed [2,3]. 

IV. Numerical Results 

To test convergence of the technique, we generated initial guesses using a random 
function. With random initial guesses, the same results were obtained as when good 
initial guesses were used. To examine stability, we simulated MOSFET's on a rather 
coarse grid of less than 400 mesh-points and smooth results were obtained. Additionally, 
we found that, in general, our HD simulations required only about 75% more CPU 
time than drift-diffusion model simulations. Fig. 1 shows the simulation results for a 
submicron MOSFET with 0.5^m channel length. In Fig. 2, we show the results of a 
computation performed for a 1/im-channel SOI device. Finally, to test the accuracy of 
the new HD model, we compared our simulations to MC calculations for a square shape 
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field. Fig. 3 shows good agreement between MC simulations and our HD calculations. 
Also interesting in Fig. 3 is that the spurious second overshoot spike, which usually 
appears in HD simulations, is absent from our calculations. 

References 
[1] K. Blotekjaer, IEEE Trans. Electron Dev., vol. ED-17, pp.38, 1970 
[2] C. Korman and I. D. Mayergoyz, Journal of Appl. Phys., 68 (3), pp. 1324-1334, 1990 
[3] Q. Lin, N. Goldsman and G.-C. Tai, Solid-State Electron, vol. 36, no. 3, pp. 411-419, 1993. 

Figure 1. 2-D Submioron MOSFET Simulation Results 
(Vgs = 3V, Vds = 3V, Channel Length = 0.5/zm) 
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Figure 2. 2-D Partially Depleted SOI MOSFET Simulation Results 
(Vgs m 2V. Vds = 2V. Channel Length = l>m) 
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Figure 3. Comparisiou between HD and MC Calculations 
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