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Abstrac t 

A new comprehensive and efficient bipolar junction transistor (BJT) device model is 
presented. This model self-consistently solves the Boltzmann transport equation (BTE) 
for electrons, the current-continuity equation for holes and the Poisson equation. The 
calculations provide almost the same information as similar Monte Carlo simulations, but 
require only 1% of the CPU time. In addition, a new discretization has been employed 
which facilitates convergence. 

I. Introduct ion 

In the past, device modeling by direct solution of the Boltzmann transport equation 
(BTE) was usually considered too difficult to be achieved. The difficulties were mainly 
due to dimensionality problems (the steady-state BTE is a 6-dimensional equation), and 
problems evaluating the complicated collision integral. 

Recently, however, the Legendre polynomial (LP) technique has been demonstrated 
to provide fast and accurate solutions to the BTE[1,2,3]. Use of the LP technique al­
lows one to overcome problems of dimensionality, and also facilitates evaluation of the 
collision integrals. However, until now the method was used only for very simple, largely 
unrealistic test structures[2], or only as a post-processor to hydrodynamic simulations[3]. 
Here, we overcome these limitations and adapt the new LP technique to actually model 
BJT 's . 

II . General Approach 

In the present work we self-consistently solve the electron BTE, the Poisson, and 
hole-continuity equations to obtain the electron momentum distribution function for an 
entire prototype BJT. We first transform the BTE into a tractable expression using a 
first order LP expansion: this reduces the dimensionality of the system, and allows us to 
integrate the collision terms analytically. 

To numerically solve the system, we first discretize the BTE using a new Scharfetter-
Gummel-like algorithm which employs special state variables. After discretizing the 
Poisson and hole-continuity equations, the overall nonlinear system is then solved using a 
Gummel-type iteration scheme. This algorithm provides nearly exponential convergence 
to efficiently obtain the distribution function for the entire device without the statistical 
noise which is characteristic of Monte Carlo methods. 
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I I I . T h e B o l t z m a n n - P o i s s o n - C o n t i n u i t y S y s t e m 

The device model consists of the Poisson equation (1), the space-dependent BTE for 
electrons (2), and the current continuity-equation for holes (3). The collision integrals in 
the BTE account for the effects of acoustic and intervalley phonons, as well as impact 
ionization scattering. These scattering cross-sections, as well as nonparabolic conduction 
band-structure values, are identical to those employed in Monte Carlo calculations^]. 

V ^ ( r ) = - [n(r) - p(r) + NA(r) - ND(r)] (1) 

i v k e . V r / ( k , r ) + ̂ ^(r).Vk/(k,r)=|^iI2| + \ ^ ^ \ + [ ^ ^ | (2) [a/(k,r)l 
dt + 
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Vr • Mr)Vr<KT) + ^ K V r P ( r ) ] = R(</>, n,p) (3) 

where n(r ) = — / / ( k , r)dk is the electron concentration; p(r) is the hole concentra­
tion; <^(r) is the potential; ND(r) and NA(r) are the doping concentration for donors 
and acceptors; / ( k , r) is the distribution function; R is the recombination rate, including 
impact ionization and Shockley-Read-Hall (SRH) recombation; Vt = KBT/e; the sub­
scripts ac, iv, ii correspond to acoustic phonons, intervalley phonons, impact ionization, 
respectively. 

I V . M e t h o d of So lu t ion : 

1. BTE Formulation: Legendre Expansion 
We first express the distribution function in terms of Legendre polynomial basis func­

tions: 

/ ( k , r) = / ( k , x) = f0(e, x) + kg(e, x)cosd (4) 

where 6 is the angle between Vr<£(r) and k; / 0 ( e , x) and kg(e, x) represent the coef­
ficients of the symmetrical and the anti-symmetrical parts of the distribution function 
respectively. 

In solving the BTE, our objective will be to determine the unknown coefficients fo 
and g. To determine these coefficients, we next substitute the Legendre expansion into 
the BTE, and use symmetry to obtain 2 equations for the 2 unknowns / 0 and g. 

2. Numerical Solution of BTE: A Scharfetter-Gummel-Like Approach 
At this point, the typical approach would be to discretize and try to solve the re­

sulting equations directly. However, this direct approach would lead to a discrete matrix 
which is ill-conditioned, would not readily account for the exponential variation in the 
distribution function, and would inhibit obtaining a solution to the overall Boltzmann-
Poisson-Continuity system. 

To overcome numerical problems, and routinely solve the coupled system, we devel­
oped a Scharfetter-Gummel-like discretization scheme to resolve the exponential behavior 
of the distribution function. This scheme enhances the diagonal elements of the discrete 
coefficient matrix, and helps to numerically account for the rapid variation in the dis­
tribution function. With this approach, f0(e, x) is expressed as the Slotboom-like form 

56 



fo(e,x) = n(x)q(e,x); and n(x) is given as niU(x)exp(</>(x)/Vt). We then substitute 
these new variables into the symmetrical and antisymmetrical equations obtained from 
the original BTE, and discretize using finite differences. We next analytically integrate 
the rapidly varying part of the difference equations between grid points. This allows us 
to account for the exponential variation of the distribution function analytically, thereby 
alleviating the computer of much of the burden. The discretization is then completed to 
yield a matrix equation with significantly enhanced diagonal terms. This discrete ver­
sion of the BTE is then solved using SOR-type iterations in the real-space domain and 
sparse-matrix Gaussian elimination in energy-space. 

3 . Self-Consistently Solving the Coupled System 

With a robust method for solving the BTE developed, the entire coupled Boltzmann-
Poisson-Continuity nonlinear system is solved using a Gummel-type iteration scheme. 
The Poisson equation is directly discretized and solved with sparse matrix algebra. The 
hole-current-continuity equation is discretized with the standard Scharfetter-Gummel 
approach, and solved directly with sparse matrix Gaussian elimination. To facilitate 
convergence of the overall scheme, special damping and weighting factors have been 
developed which help to guide each Gummel iteration toward the proper solution. The 
flow chart of this numerical procedure is shown in Fig. 1. 

V . Resu l t s 

Simulation results of a submicron n+/p/n~ /n+ BJT are shown in Figs. 2 to 8. In 
Fig. 2 the prototype BJT structure is shown. Fig. 3 shows the distribution function 
for the entire device. In Figs. 4 and 5 we show calculated values for average velocity, 
carrier concentration, average energy and electric field. The figures also show that good 
agreement with MC calculations, which employ the same transport model, was obtained. 
It is worth noting that velocity overshoot, which is characteristic of non-equilibrium 
electron transport, is observed near the p/n~ junction. To demonstrate the robustness 
of the algorithm, in Figs. 6 to 8 we show results of average energy and velocity, as well 
as ionization coefficients, calculated for a large range of applied biases. 

V I . Conclus ion 

We have developed an accurate and stable approach to BJT simulation by the direct, 
self-consistent solution to the Poisson, hole-continuity and electron-Boltzmann equations. 
The method calculates the distribution function for the entire device. Furthermore, the 
method uses less than 1/100 the CPU time required by similar MC calculations. 
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Fig. 1. The flow chart illustrates the 
Gummel algorithm used in this work. 
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Fig. 3. The energy distribution function 
as a function of position along the BJT. 
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Fig. 2. The prototype BJT modeled by 
direct solution of the Boltzmann-Poisson-
Continuity system. 
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Fig. 4. Electron concentration (dash line) 
and average velocity (solid line) calculated 
by the new method. Average velocity from 
MC calculations (open circles) is also plot­
ted. 
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Fig. 5. Electric field (dash line) and aver­
age energy (solid line) calculated with this 
direct method. MC calculations are also 
plotted (open circles). 
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Fig. 6. Average electron en­
ergy as a function of position 
along the BJT. The simulations 
easily converge for a wide range 
of applied biases using the Schar-
fetter Gummel-like discretiza­
tion of the Boltzmann-Poisson-
Continuity system. 
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Fig. 7. Average electron ve­
locity as a function of position 
calculated by the Boltzmann-
Poisson-Continuity system for 
a wide range of applied biases. 
Velocity overshoot is clearly pre­
dicted by the method. 

Fig. 8. Values for impact ion­
ization coefficient calculated for 
a wide range of applied bias 
voltages. It is clear that im­
pact ionization is maximum in 
the high-field collector region. 
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