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Abstract

The classical and quantum hydrodynamic equations are presented in a unified formula-
tion and the 3D transport equations are mathematically classified. The 1D steady-state
classical and quantum equations are discretized in conservation form using an upwind
method. A classical hydrodynamic simulation of a steady-state electron shock wave in a
one micron Si semiconductor device at 77 K is presented and compared with a DAMO-
CLES simulation of the Boltzmann equation. Quantum hydrodynamic simulations of a
resonant tunneling diode are presented which show charge buildup in the quantum well
and negative differential resistance in the current-voltage curve.

I. Introduction

Electron propagation in a semiconductor crystal is well modeled down to submicron scales
by the classical hydrodynamic model. The classical hydrodynamic equations can be ex-
tended to include quantum effects by incorporating the first quantum corrections. These
O(R?) terms allow particle tunneling through potential barriers and particle buildup in
potential wells.

The aim of this paper is to give a unified presentation of the classical and quantum
hydrodynamic conservation laws and of their mathematical classification and numerical
discretization. I will also present a classical hydrodynamic (CHD) simulation of an elec-
tron shock wave in a one micron Si nt —n—n* device at 77 K and quantum hydrodynamic
(QHD) simulations of resonant tunneling in an GaAs/Al,Ga;_.As diode at 77 K.

The classical and quantum hydrodynamic conservation laws have the same form:
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where n is the electron density, u is the velocity, p is the momentum density, Fi; is
the stress tensor, V = —eg¢ is the potential energy, ¢ is the electric potential, e > 0 is
the electronic charge, W is the energy density, q is the heat flux, and Tp is the lattice
temperature in energy units (kg is set equal to 1). Indices %, j equal 1, 2, 3, and repeated
indices are summed over. LEq. (1) expresses conservation of electron number, Eq. (2)
expresses conservation of momentum, and Eq. (3) expresses conservation of energy. The
collision terms in Eqgs. (2) and (3) are modeled here by the standard relaxation time
approximation, with momentum and energy relaxation times 7, and 7,

The classical and quantum hydrodynamic equations can be derived from a moment
expansion of the Wigner-Boltzmann equation. The classical equations are obtained by
setting & = 0. To close the moment expansion at three moments, we have to define e.g.
p, Pi;, W, and q in terms of n, u, and T', where T is the electron temperature.

In the simplest approximation, the heat flux is specified by the Fourier law q = —xVT.
For the O(h?) “momentum-shifted” thermal equilibrium Wigner distribution function, the
momentum density p = mnu, where m is the effective electron mass, the stress tensor is

given by
Py = —nT85 + O 1ogin) + O(1) (4)
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I derived the full three-dimensional quantum hydrodynamic model for the first time by a
moment expansion of the Wigner-Boltzmann equation in Ref. [1]. The quantum correction
to the energy density was first derived by Wigner [2]. The quantum correction to the stress
tensor was proposed by Ancona and Tiersten 3] on general thermodynamical grounds and
derived by Ancona and lafrate [4] in the Wigner formalism. In the one-dimensional case,
the 3D QHD equations reduce to the QHD model of Grubin and Kreskovsky [5].

The actual expansion parameter in the QHD equations is h?/8mT[%, where [ 1s a
characteristic length scale of the problem [4]. For the resonant tunneling diode simulations
in section V with T'~ Ty = 77 K and [ = 100 A, the expansion parameter ~ 0.23.

The transport equations (1)-(3) are coupled to Poisson’s equation for the electric
potential energy

V-(eVV) = eX(Np — Ny —n) (6)
where ¢ is the dielectric constant, Np is the density of donors, and Ny is the density of
acceptors.

I1. Classification of the Hydrodynamic Equations

To classify the hydrodynamic equations, rewrite the hydrodynamic equations (1)-(3) and
(6) (with 7,, T, — 00) in terms of n, u, and T
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Then linearize the PDEs (7)-(10) with respect to a Fourier mode perturbation, and
freeze coefficients. Set
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where (7, @, T, V] is a solution of the hydrodynamic equations.
Next write the linearized hydrodynamic equations in terms of the symbol S of the
linearized PDE system (7)-(10) as

— diag{o, o, 0, 0, 0, 0} [6n, bu;, 8T, 6V]+ S[bn, éu;, 8T, 6V]=0 (12)

As |k| — oo, S — diag{o, 0§;;, o, 0} has the form
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where i labels columns in the velocity perturbation éu; and j labels rows in the velocity
equation (8). I have dropped the bar over the solution [n, w;, T, V], and have separately
kept the leading terms in k for the limits 2 — 0 and & — 0.

The mathematical type of the PDE system is determined by the asymptotic eigenvalues
o of the symbol as |k| — co. We need only consider the upper 5 x 5 block S5 of the
symbol, since the coupling of the transport equations (7)-(9) to Poisson’s equation (10)
only introduces the elliptic Poisson mode, and does not affect the modes of the transport
equations.

There are three physically interesting cases to consider:

(1) = 0, & = 0 (electrogasdynamics). The eigenvalues of the symbol Ss and correspond-
ing modes are
{ z(k -u =+ kc) hyperbolic (14)

ik-u hyperbolic, multiplicity 3

where ¢ = /5T /3m. There are five nonlinear waves in classical electrogasdynamics cor-
responding to the five hyperbolic modes: two shock waves and three contact waves. Two



contact waves can be labeled by a jump in the tangential velocity u, across the wave, and
one contact wave by a jump in the temperature T'.

(2) & =0, x > 0 (hydrodynamic model or electrogasdynamics with heat conduction). The
eigenvalues of the symbol Ss and corresponding modes are

i(k-u=xkc) hyperbolic
tk-u hyperbolic, multiplicity 2 (15)
2k*x/n + ik -u parabolic

where ¢ = /T/m. With heat conduction, there are four nonlinear waves [6] in the CHD
model corresponding to the four hyperbolic modes: two shock waves and two contact
waves. The two contact waves can be labeled by a jump in the tangential velocity u;
across the wave. The contact wave corresponding to a discontinuity in 7" has disappeared
due to the parabolic heat conduction term V- («VT) in Eq. (3).

(3) & #£ 0, k > 0 (quantum hydrodynamic model). The eigenvalues of the symbol S5 and
corresponding modes are

:i:ék"‘?%; Schrodinger
ik-u hyperbolic, multiplicity 2 (16)
2k’c/n  parabolic

There are two contact discontinuities (in u,) in the QHD model corresponding to the two
hyperbolic modes. Note that two of the hyperbolic modes (which allow shock discontinu-
ities to form) in the classical hydrodynamic model have become Schrédinger modes when
the quantum corrections are mcluded.

Well-posed boundary conditions for the 2D (and by extension 3D) classical hydrody-
namic model are formulated in Ref. [7], assuming subsonic flow at the inflow and outflow
boundaries. Here I will simply note that in one dimension, the CHD model (with heat
conduction) has two hyperbolic modes, one parabolic mode, and one elliptic mode, and
the QHD model (with heat conduction) has two Schrodinger modes, one parabolic mode,
and one elliptic mode. Thus six boundary conditions are necessary for the CHD model and
eight boundary conditions for the QHD model. Well-posed boundary conditions for the
1D CHD equations are n = Np, and T = T (or 8T/0z = 0) at Tpmin and Zmaz, With a bias
AV across the device: V(zmin) = Tlog(n/n;) and V(zmez) = T log(n/n;) + eAV, where
n; is the intrinsic electron concentration. For the 1D QHD equations, I add dn/0z =0
at Tpin and Tmaz-

ITI. The Second Upwind Method

I will discretize the 1D steady-state hydrodynamic equations using an upwind method
adapted from computational fluid dynamics. Since the upwind method requires velocity
values U_L, UL, Uyttt UN_L, Ungy at the midpoints of the elements {; (t =1, - » N)



connecting grid points z — I and ¢, I will use a staggered grid for u. (I impose a computa-
tional Neumann boundary condition du/dz = 0 at z = 0 and 7 = N to determine u_y and
uN+§') The variables n, T', and V are defined at the grid points: =0, 1, --- , N—1, N.
The boundary conditions specify n, T, and V (and dn/dz for the QHD model) at ¢ = 0
and z = N.

In one dimension, the steady-state CHD and QHD models consist of the three nonlinear
conservation laws for electron number, momentum, and energy, plus Poisson’s equation:
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where (set & = 0 for the CHD model)
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Equations f, = 0, fr = 0, and fy = 0 are enforced at the interior grid points
i=1, ---, N —1, while equation f, = 0 is enforced at the midpoints of the elements

L,i=1, --- N.
In the second upwind method, the advection terms d(ug)/dz in Eq. (17) are discretized
using second upwind differences?®

d
75 (49)i ™ (Uiy 1R —u;_191)/ Az (27)

2The second upwind method is a conservative extension of the original first-order upwind method.
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where

_ g: (u,-+% > 0) _ { gi-1 (ui—:} > 0) (28)
IR = { Ji+1 (u,-+% <0)’ gL = gi (u,-_% < 0)

and second-order central differences are used for hu, b, hv, and s7.
I use Newton’s method to linearize the discretized version of Eq. (17):
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where J is the Jacobian and ¢ is a damping factor between 0 and 1, chosen to insure that
the norm of the residual f decreases monotonically.

IV. CHD Simulation of the Electron Shock Wave

The nonlinear hyperbolic modes of the CHD model allow shock waves to develop. A
steady-state electron shock wave in a semiconductor device was first simulated in Ref. (8].
The shock simulation has been confirmed by a Monte Carlo simulation of Laux of the
Boltzmann equation using the DAMOQCLES [9] program. The semiconductor device is an
nt —n — nt Si diode at 77 K with 0.1 micron source and drain, with n* doping density
Np =10"® ¢cm™3, and a 1.0 micron channel, with n doping density Np = 10'® cm™3.

For the momentum and energy relaxation times in the hydrodynamic model, I use
modified Baccarani-Wordemann models:

T
Tp = 'rp()?-.(1 (30)
3
m=&G+zT) (31)
2 §mvf

where the low-energy momentum relaxation time Tpo 1S set equal to 1.67 picoseconds from
the DAMOCLES data for 0.00995 eV electrons in homogeneous Si and v, = v,(To) is the
saturation velocity. For Si at 77 K, m = 0.24 m, and v, = 1.2 x 107 cm/s.

The hydrodynamic and Boltzmann simulations agree remarkedly well [10] when the
amount of heat conduction in the hydrodynamic model is adjusted. The best fit for the
thermal conductivity « in the Wiedemann-Franz law for heat conduction

q=—-kVT, k= koTponTo/m, (32)

is given by xo = 0.05.

Figs. 1 and 2 compare the hydrodynamic and DAMOCLES simulations of the 77 K
electron shock wave in Si at a bias AV = 1 volt. DAMOCLES calculates a current of
4500 amps/cm?, very close to the hydrodynamic value of 4460 amps/cm?. The velocity
plot Fig. 1 most clearly shows the shock profile, which is spread out slightly due to the
parabolic heat conduction term in the CHD model. The flow is supersonic at the velocity
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peak just inside the channel, and subsonic at the end of the “velocity overshoot” wave
where the velocity makes a “bend” to a constant value in the channel.

The DAMOCLES velocity exhibits a Mach 2.1 shock profile based on both internal
evidence® and comparison with the hydrodynamic simulation.

The type of velocity overshoot illustrated in Fig. 1 is always associated with a shock
wave for the nt —n —nt diode. As the electrons enter the channel, the electron velocity
increases rapidly to a peak value greater than the saturation velocity v,. At the same time,
the electron temperature falls slightly as the electrons overcome the small potential barrier
at the source/channel junction. Thus the electron Mach number M near the velocity peak

is greater than v,/c > v,/co, where ¢ = \/T/m is the soundspeed at temperature T and

¢o is the soundspeed at the ambient temperature 7. For Si at 77 K, v, = 1.2 x 107
cm/s, cg = 7.0 x 10° cm/s, and M > 1.7. On the other hand, the electron flow near the
channel/drain is subsonic since v & v,, while T > Tg, making ¢ > v;.
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Figure 1: Hydrodynamic and Monte Carlo electron velocity in 107 cm/s for AV = 1 volt.
The jagged curve is the DAMOCLES result. The channel is between z = 0 and z = 1
micron.

The transition from supersonic flow to subsonic flow in general necessitates a shock
wave in gas dynamics*—that is, a wave over which density, velocity, and (if heat conduc-
tion equals zero) temperature change very rapidly. The n* drain in the source—channel-

3The electron temperature T =z 77 K at the shock wave. Using the effective electron mass approxi-
mation, the electron Mach number M = v/c = v//T/m =~ 2.1.
4Gee Courant and Friedrichs [11], pp. 380-387.
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Figure 2: Hydrodynamic and Monte Carlo electron average energy in eV for AV =1 volt.
The jagged curve is the DAMOCLES result. ‘

drain structure of the diode provides the mechanism that forces a supersonic flow in the
channel back down to subsonic flow.

The excellent agreement between the hydrodynamic and DAMOCLES results is re-
markable in that the hydrodynamic model is orders of magnitude faster than Monte Carlo
simulation of the Boltzmann equation. The hydrodynamic model also provides a mathe-
matical framework in which to understand the velocity overshoot wave in the n* —n—n*

diode.

V. QHD Simulation of the Resonant Tunneling Diode

The behavior of quantum devices that depend on particle tunneling through potential
barriers and/or charge buildup in potential wells can be efficiently simulated using the
QHD model. Here I will present simulations of a GaAs resonant tunneling diode with
double Al Ga,;_.As barriers, with barrier height B = 0.209 eV. The diode consists of an
n* source (at the left) and an n* drain (at the right) with the doping density Np = 10'®
cm™3, and an n channel with Np = 5 x 105 ¢m=3 (see Fig. 3). The channel is 250
long, the barriers are 50 A wide, and the quantum well between the barriers is 50 A wide.
To enhance resonant tunneling, the device has 50 A spacers between the barriers and the
contacts.

The barrier height B is incorporated into the QHD transport equations (1)-(3) by
replacing V — V + B. (Poisson’s equation is not changed.)
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Figure 3: Doping/10'® cm™3.
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Figure 4: Current density in kiloamps/cm? vs. voltage for the resonant tunneling diode
at 77 K. xo = 0.2 (black), 0.4 (dark gray), and 0.6 (gray). The dots represent computed
solution points.
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For lower valley electrons in GaAs at 77 K, the low-energy momentum relaxation
time Ty in Eqs. (30) and (31) is set equal to 0.9 picoseconds, the effective electron mass
m = 0.063 m,, and the saturation velocity (in Eq. (31)) v, = 2 x 107 cm/s. The dielectric
constant € = 12.9 for GaAs.

Current-voltage curves for the resonant tunneling diode at 77 K are plotted in Fig. 4
for three different values of kg in the expression for thermal conductivity (32). These are
the first simulations [1] of the full QHD equations to show NDR in the resonant tunneling
diode.

The peak of the current-voltage curve occurs as the electrons tunneling through the
first barrier come into resonance with the the ground state of the quantum well. Note
the presence of a “shoulder” in the current-voltage curve around AV = 0.25 volts. The
shoulder signals the location of the first virtual state of the quantum well. The location of
the valley and shoulder can be qualitatively understood from the energy levels of a square
well. For a 50 A wide 0.209 eV high GaAs finite square well, there is just one bound state
energy level at 0.079 eV. The energy of the first virtual state of the well is 0.24 eV.

The main effect of larger values of kg is to shift the peak of the current-voltage curve
to the right. With lower values of g, the electrons have a higher average energy as they
impinge upon the first barrier, and therefore resonate with the well at a lower applied
voltage.

A physically relevant value of g is approximately 0.4 for this device. The peak to valley
current ratio of 1.95 agrees quantitatively with experimental ratios for similar devices.

Fig. 5 shows the dramatic charge enhancement in the quantum well typical of the
resonant tunneling diode for applied voltages of AV = 0.097 (peak), 0.191 (valley), and
0.22 volts (just before the shoulder) (with kg = 0.4). The electron density at the center
of the quantum well increases as AV increases, and is more than two orders of magnitude
larger than the background doping density. Note the depletion of electrons around the
channel-drain junction.

As illustrated in Fig. 6, the electrons spend the longest time in the quantum well
for voltages near AVyquey. The “dwell” time spent by electrons in the well increases
monotonically up to voltages near AV,qey, and then decreases rapidly. The macroscopic
QHD dwell time differs qualitatively from dwell times based on microscopic quantum
calculations, which predict that the dwell time is maximum at resonance.

Since the QHD equations have the same form as the classical fluid dynamical equa-
tions, well-understood classical boundary conditions can be applied in simulating quantum
devices. Moreover, the QHD equations are expressed in terms of the fluid dynamical quan-
tities density, velocity, and temperature. These classical fluid dynamical concepts enable
us to interpret electron behavior in quantum devices in a physically intuitive way. We
can define the time spent by an electron in the quantum well or the electron temperature
throughout the device in a precise manner. In turn, the intuitive understanding developed
through the QHD model sheds light on more fully quantum mechanical descriptions of
electron behavior in quantum devices.
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Figure 5: Log[Density/10'® cm™]. The curves are for AV = 0.097 (gray), 0.191 (dark
gray), and 0.22 (black) volts.
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Figure 6: Time in picoseconds (dots) spent by electrons in the quantum well vs. voltage.
For reference, a scaled version of the current density (solid line) is also shown.
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