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A b s t r a c t 

The classical and quantum hydrodynamic equations are presented in a unified formula
tion and the 3D transport equations are mathematically classified. The ID steady-state 
classical and quantum equations are discretized in conservation form using an upwind 
method. A classical hydrodynamic simulation of a steady-state electron shock wave in a 
one micron Si semiconductor device at 77 K is presented and compared with a DAMO
CLES simulation of the Boltzmann equation. Quantum hydrodynamic simulations of a 
resonant tunneling diode are presented which show charge buildup in the quantum well 
and negative differential resistance in the current-voltage curve. 

I. Introduct ion 

Electron propagation in a semiconductor crystal is well modeled down to submicron scales 
by the classical hydrodynamic model. The classical hydrodynamic equations can be ex
tended to include quantum effects by incorporating the first quantum corrections. These 
0(ti2) terms allow particle tunneling through potential barriers and particle buildup in 
potential wells. 

The aim of this paper is to give a unified presentation of the classical and quantum 
hydrodynamic conservation laws and of their mathematical classification and numerical 
discretization. I will also present a classical hydrodynamic (CHD) simulation of an elec
tron shock wave in a one micron Si n + — n — n+ device at 77 K and quantum hydrodynamic 
(QHD) simulations of resonant tunneling in an GaAs/Al x Gai_ x As diode at 77 K. 

The classical and quantum hydrodynamic conservation laws have the same form: 

dn d , 
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where n is the electron density, u is the velocity, p is the momentum density, P fJ is 
the stress tensor, V = — e<f> is the potential energy, <j> is the electric potential, e > 0 is 
the electronic charge, W is the energy density, q is the heat flux, and To is the lattice 
temperature in energy units (fcg is set equal to 1). Indices i, j equal 1, 2, 3, and repeated 
indices are summed over. Eq. (1) expresses conservation of electron number, Eq. (2) 
expresses conservation of momentum, and Eq. (3) expresses conservation of energy. The 
collision terms in Eqs. (2) and (3) are modeled here by the standard relaxation t ime 
approximation, with momentum and energy relaxation times rp and TW. 

The classical and quantum hydrodynamic equations can be derived from a moment 
expansion of the Wigner-Boltzmann equation. The classical equations are obtained by 
setting % = 0. To close the moment expansion at three moments, we have to define e.g. 
p , P^, W, and q in terms of n, u , and J1, where T is the electron temperature. 

In the simplest approximation, the heat flux is specified by the Fourier law q = —nVT. 
For the 0(Ti2) "momentum-shifted" thermal equilibrium Wigner distribution function, the 
momentum density p = m n u , where m is the effective electron mass, the stress tensor is 
given by 

F"=-"^+£i i ogw+o( f i 4» (4) 

and the energy density by 

W = InT + \mriu2 - ^ V 2 log(n) + 0(h4) . (5) 
2 2 24m 

I derived the full three-dimensional quantum hydrodynamic model for the first t ime by a 
moment expansion of the Wigner-Boltzmann equation in Ref. [1]. The quantum correction 
to the energy density was first derived by Wigner [2]. The quantum correction to the stress 
tensor was proposed by Ancona and Tiersten [3] on general thermodynamical grounds and 
derived by Ancona and Iafrate [4] in the Wigner formalism. In the one-dimensional case, 
the 3D QHD equations reduce to the QHD model of Grubin and Kreskovsky [5]. 

The actual expansion parameter in the QHD equations is h2/8rnTl2, where / is a 
characteristic length scale of the problem [4]. For the resonant tunneling diode simulations 
in section V with T & TQ = 77 K and / = 100 A, the expansion parameter ~ 0.23. 

The transport equations ( l ) - (3) are coupled to Poisson's equation for the electric 
potential energy 

V- ( e W ) = e2(ND - NA - n) (6) 

where e is the dielectric constant, No is the density of donors, and NA is the density of 
acceptors. 

I I . Class i f ica t ion of t h e H y d r o d y n a m i c E q u a t i o n s 

To classify the hydrodynamic equations, rewrite the hydrodynamic equations ( l ) - (3) and 
(6) (with rp , TW —• oo) in terms of n, u , and T: 

Tt + &-(""<> = ° (7) 
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duj dui 1 d 

dt * dxi mn dxj 

dt *dx{ 3 dx{ 

tf d 
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* log{n))+L^ = o 
m dxj 

(8) 

2 d ( dT' 
K- + 

d 
(nV2Ui) = 0 (9) 

(10) 

ZndxiS^'dxiJ ' Wmndxi' 

- V ( e W ) + e2{ND ~ NA - n) = 0 

Then linearize the PDEs (7)—(10) with respect to a Fourier mode perturbation, and 

freeze coefficients. Set 
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(11) 

where [n, ui, T, V] is a solution of the hydrodynamic equations. 
Next write the linearized hydrodynamic equations in terms of the symbol S of the 

linearized PDE system (7)-(10) as 

As Ikl 

- d i a g { a , a, a, a, a, 0} [6n, 8ut, 8T, 8V) + S [Sn, Suit ST, SV] = 0 

oo, S - diag{er, <r8ij, o, 0} has the form 

(12) 
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(13) 

where i labels columns in the velocity perturbation Sui and j labels rows in the velocity 
equation (8). I have dropped the bar over the solution [n, u,-, T, V], and have separately 
kept the leading terms in k for the limits ft-»0 and K —+ 0. 

The mathematical type of the PDE system is determined by the asymptotic eigenvalues 
a of the symbol as |k| —• oo. We need only consider the upper 5 x 5 block «Ss of the 
symbol, since the coupling of the transport equations (7)-(9) to Poisson's equation (10) 
only introduces the elliptic Poisson mode, and does not affect the modes of the transport 
equations. 

There are three physically interesting cases to consider: 

(1) h = 0, K = 0 (electrogasdynamics). The eigenvalues of the symbol S5 and correspond

ing modes are 
j i(k • u ± kc) hyperbolic , ., 
I ik • u hyperbolic, multiplicity 3 

where c = JbT/Sm. There are five nonlinear waves in classical electrogasdynamics cor
responding to the five hyperbolic modes: two shock waves and three contact waves. Two 
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contact waves can be labeled by a jump in the tangential velocity u t across the wave, and 
one contact wave by a jump in the temperature T. 

(2) % = 0, K > 0 (hydrodynamic model or electrogasdynamics with heat conduction). The 
eigenvalues of the symbol S$ and corresponding modes are 

z(k • u ± kc) hyperbolic 
ik • u hyperbolic, multiplicity 2 (15) 
|fc2At/n + ik • u parabolic 

where c = JT/m. With heat conduction, there are four nonlinear waves [6] in the CHD 
model corresponding to the four hyperbolic modes: two shock waves and two contact 
waves. The two contact waves can be labeled by a jump in the tangential velocity ut 

across the wave. The contact wave corresponding to a discontinuity in T has disappeared 
due to the parabolic heat conduction term V- (KVT) in Eq. (3). 

(3) h ^ 0, K > 0 (quantum hydrodynamic model). The eigenvalues of the symbol S$ and 
corresponding modes are 

Schrodinger 

hyperbolic, multiplicity 2 
(16) 

parabolic 
There are two contact discontinuities (in ut) in the QHD model corresponding to the two 
hyperbolic modes. Note that two of the hyperbolic modes (which allow shock discontinu
ities to form) in the classical hydrodynamic model have become Schrodinger modes when 
the quantum corrections are included. 

Well-posed boundary conditions for the 2D (and by extension 3D) classical hydrody
namic model are formulated in Ref. [7], assuming subsonic flow at the inflow and outflow 
boundaries. Here I will simply note that in one dimension, the CHD model (with heat 
conduction) has two hyperbolic modes, one parabolic mode, and one elliptic mode, and 
the QHD model (with heat conduction) has two Schrodinger modes, one parabolic mode, 
and one elliptic mode. Thus six boundary conditions are necessary for the CHD model and 
eight boundary conditions for the QHD model. Well-posed boundary conditions for the 
ID CHD equations are n = ND, and T = T0 (or dT/dx = 0) at xmin and xmax, with a bias 
AV across the device: V(xmin) = r i o g ( n / n i ) and V{xmax) = r i o g ( n / n , ) + eAV, where 
n» is the intrinsic electron concentration. For the ID QHD equations, I add dn/dx = 0 

a t Xmin a n f l Xmax-"mtn 

III . T h e Second U p w i n d M e t h o d 

I will discretize the ID steady-state hydrodynamic equations using an upwind method 
adapted from computational fluid dynamics. Since the upwind method requires velocity 
values t t _ i , M I , MS, ••• , uN_i, uN+i at the midpoints of the elements U (i = 1, • • • » •**) 
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connecting grid points i — 1 and i, I will use a staggered grid for u. (I impose a computa
tional Neumann boundary condition duldx = 0 at i = 0 and i = N to determine u_i and 

2 

uN+i.) The variables n, T, and V are denned at the grid points i = 0, 1, • • • , iV — 1, JV. 
The boundary conditions specify n, T, and V (and dn/dx for the QHD model) at z = 0 
and i = N. 

In one dimension, the steady-state CHD and QHD models consist of the three nonlinear 
conservation laws for electron number, momentum, and energy, plus Poisson's equation: 

r/n ] 
/« 

h 
.fv\ 

d 
dx 

' ugn ' 
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ugT 

0 

+ 
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fly 
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+ 

" 0 " 

ST 
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= 0 

where (set h = 0 for the CHD model) 

gn = n 

gu = mnu 

5 _ 1 2 Ti2n d2 

qT = - n i + —mnu 
J1 2 2 8m cte2 

log(n) + nV 

dV d . _. d (h2n d2 , f \ dV 
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2' 

%2n * 1 ^ 3 r ^ / 

2W? l 0 s ( n )-2n r°J / T" 

(17) 

(18) 

(19) 

(20) 

(21) 

(22) 

(23) 

(24) 

(25) 

sy = e2(ND -NA-n) . (26) 

Equations fn = 0, fr = 0, and fy = 0 are enforced at the interior grid points 
» = 1, ••• , N — 1, while equation /„ = 0 is enforced at the midpoints of the elements 
/,-, » = 1, ••• N. 

In the second upwind method, the advection terms d(ug)/dx in Eq. (17) are discretized 
using second upwind differences2 

2^(ug)i ~ K+10* - Ui_LgL)/&x (27) 

2The second upwind method is a conservative extension of the original first-order upwind method. 
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where 

9R = 9L = 
9i-i (u,-_i > 0) 

gi (u,-_i < 0) 

9i («,-+! > 0) 
9i+i (ui+i < 0) 

and second-order central differences are used for hu, h?, hy, and S?. 
I use Newton's method to linearize the discretized version of Eq. (17): 

J 

(28) 
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SV 

(29) 

where J is the Jacobian and t is a damping factor between 0 and 1, chosen to insure that 
the norm of the residual / decreases monotonically. 

IV. CHD Simulation of the Electron Shock Wave 

The nonlinear hyperbolic modes of the CHD model allow shock waves to develop. A 
steady-state electron shock wave in a semiconductor device was first simulated in Ref. [8]. 
The shock simulation has been confirmed by a Monte Carlo simulation of Laux of the 
Boltzmann equation using the DAMOCLES [9] program. The semiconductor device is an 
n —n — n Si diode at 77 K with 0.1 micron source and drain, with n + doping density 

- 3 ND = 1018 cm - 3 , and a 1.0 micron channel, with n doping density Np = 1015 cm 
For the momentum and energy relaxation times in the hydrodynamic model, I use 

modified Baccarani-Wordemann models: 

TP = TPQ- (30) 

\T 

\mV1s 
(31) 

where the low-energy momentum relaxation time rp0 is set equal to 1.67 picoseconds from 
the DAMOCLES data for 0.00995 eV electrons in homogeneous Si and v, = vt(T0) is the 
saturation velocity. For Si at 77 K, m = 0.24 me and v3 = 1.2 x 107 cm/s. 

The hydrodynamic and Boltzmann simulations agree remarkedly well [10] when the 
amount of heat conduction in the hydrodynamic model is adjusted. The best fit for the 
thermal conductivity K in the Wiedemann-Franz law for heat conduction 

Q = -KVT, K = tcoTponTo/m, (32) 

is given by K0 = 0.05. 

Figs. 1 and 2 compare the hydrodynamic and DAMOCLES simulations of the 77 K 
electron shock wave in Si at a bias AV = 1 volt. DAMOCLES calculates a current of 
4500 amps/cm2, very close to the hydrodynamic value of 4460 amps/cm2. The velocity 
plot Fig. 1 most clearly shows the shock profile, which is spread out slightly due to the 
parabolic heat conduction term in the CHD model. The flow is supersonic at the velocity 
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peak just inside the channel, and subsonic at the end of the "velocity overshoot" wave 
where the velocity makes a "bend" to a constant value in the channel. 

The DAMOCLES velocity exhibits a Mach 2.1 shock profile based on both internal 
evidence3 and comparison with the hydrodynamic simulation. 

The type of velocity overshoot illustrated in Fig. 1 is always associated with a shock 
wave for the n+ — n — n+ diode. As the electrons enter the channel, the electron velocity 
increases rapidly to a peak value greater than the saturation velocity v3. At the same time, 
the electron temperature falls slightly as the electrons overcome the small potential barrier 
at the source/channel junction. Thus the electron Mach number M near the velocity peak 
is greater than vs/c > VS/CQ, where c = JT/rn is the soundspeed at temperature T and 
Co is the soundspeed at the ambient temperature To. For Si at 77 K, vs = 1.2 x 107 

cm/s , Co = 7.0 x 106 cm/s , and M > 1.7. On the other hand, the electron flow near the 
channel/drain is subsonic since v « vs, while T 3> T0, making c >• vs. 

0.2 0.4 0.6 0.8 

x in micrometers 

Figure 1: Hydrodynamic and Monte Carlo electron velocity in 107 cm/s for AV = 1 volt. 
The jagged curve is the DAMOCLES result. The channel is between x = 0 and x = 1 
micron. 

The transition from supersonic flow to subsonic flow in general necessitates a shock 
wave in gas dynamics4—that is, a wave over which density, velocity, and (if heat conduc
tion equals zero) temperature change very rapidly. The n + drain in the source-channel-

3The electron temperature T w 77 K at the shock wave. Using the effective electron mass approxi
mation, the electron Mach number M = v/c = v/^/T/m ?s 2.1. 

4See Courant and Friedrichs [11], pp. 380-387. 
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Figure 2: Hydrodynamic and Monte Carlo electron average energy in eV for AV = 1 volt. 
The jagged curve is the DAMOCLES result. 

dram structure of the diode provides the mechanism that forces a supersonic flow in the 
channel back down to subsonic flow. 

The excellent agreement between the hydrodynamic and DAMOCLES results is re
markable in that the hydrodynamic model is orders of magnitude faster than Monte Carlo 
simulation of the Boltzmann equation. The hydrodynamic model also provides a mathe
matical framework in which to understand the velocity overshoot wave in the n+-n-n+ 

diode. 

V. QHD Simulation of the Resonant Tunneling Diode 

The behavior of quantum devices that depend on particle tunneling through potential 
barriers and/or charge buildup in potential wells can be efficiently simulated using the 
QHD model. Here I will present simulations of a GaAs resonant tunneling diode with 
double Al£Ga!_xAs barriers, with barrier height B = 0.209 eV. The diode consists of an 
n+^ource (at the left) and an n+ drain (at the right) with the doping density ND = 1018 

cm 3, and an n channel with ND = 5 x 1015 cm"3 (see Fig. 3). The channel is 250 A 
long, the barriers are 50 A wide, and the quantum well between the barriers is 50 A wide. 
To enhance resonant tunneling, the device has 50 A spacers between the barriers and the 
contacts. 

The barrier height B is incorporated into the QHD transport equations (l)-(3) by 
replacing F - + F + 6 . (Poisson's equation is not changed.) 
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Figure 3: Doping/1018 cm - 3 . 

Figure 4: Current density in kiloamps/cm2 vs. voltage for the resonant tunneling diode 
at 77 K. K0 = 0.2 (black), 0.4 (dark gray), and 0.6 (gray). The dots represent computed 
solution points. 
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For lower valley electrons in GaAs at 77 K, the low-energy momentum relaxation 
time Tpo in Eqs. (30) and (31) is set equal to 0.9 picoseconds, the effective electron mass 
m = 0.063 me, and the saturation velocity (in Eq. (31)) t 5 R i 2 x 107 cm/s. The dielectric 
constant e = 12.9 for GaAs. 

Current-voltage curves for the resonant tunneling diode at 77 K are plotted in Fig. 4 
for three different values of KQ in the expression for thermal conductivity (32). These are 
the first simulations [1] of the full QHD equations to show NDR in the resonant tunneling 
diode. 

The peak of the current-voltage curve occurs as the electrons tunneling through the 
first barrier come into resonance with the the ground state of the quantum well. Note 
the presence of a "shoulder" in the current-voltage curve around AV = 0.25 volts. The 
shoulder signals the location of the first virtual state of the quantum well. The location of 
the valley and shoulder can be qualitatively understood from the energy levels of a square 
well. For a 50 A wide 0.209 eV high GaAs finite square well, there is just one bound state 
energy level at 0.079 eV. The energy of the first virtual state of the well is 0.24 eV. 

The main effect of larger values of K0 is to shift the peak of the current-voltage curve 
to the right. With lower values of /c0, the electrons have a higher average energy as they 
impinge upon the first barrier, and therefore resonate with the well at a lower applied 
voltage. 

A physically relevant value of K0 is approximately 0.4 for this device. The peak to valley 
current ratio of 1.95 agrees quantitatively with experimental ratios for similar devices. 

Fig. 5 shows the dramatic charge enhancement in the quantum well typical of the 
resonant tunneling diode for applied voltages of AV = 0.097 (peak), 0.191 (valley), and 
0.22 volts (just before the shoulder) (with K0 = 0.4). The electron density at the center 
of the quantum well increases as AV increases, and is more than two orders of magnitude 
larger than the background doping density. Note the depletion of electrons around the 
channel-drain junction. 

As illustrated in Fig. 6, the electrons spend the longest time in the quantum well 
for voltages near AVvauey. The "dwell" time spent by electrons in the well increases 
monotonically up to voltages near AVvaney, and then decreases rapidly. The macroscopic 
QHD dwell time differs qualitatively from dwell times based on microscopic quantum 
calculations, which predict that the dwell time is maximum at resonance. 

Since the QHD equations have the same form as the classical fluid dynamical equa
tions, well-understood classical boundary conditions can be applied in simulating quantum 
devices. Moreover, the QHD equations are expressed in terms of the fluid dynamical quan
tities density, velocity, and temperature. These classical fluid dynamical concepts enable 
us to interpret electron behavior in quantum devices in a physically intuitive way. We 
can define the time spent by an electron in the quantum well or the electron temperature 
throughout the device in a precise manner. In turn, the intuitive understanding developed 
through the QHD model sheds light on more fully quantum mechanical descriptions of 
electron behavior in quantum devices. 
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Figure 5: Log[Density/1018 cm - 3]. The curves are for AV = 0.097 (gray), 0.191 (dark 
gray), and 0.22 (black) volts. 

Figure 6: Time in picoseconds (dots) spent by electrons in the quantum well vs. voltage. 
For reference, a scaled version of the current density (solid line) is also shown. 
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