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Abstract 

Various numerical routines are discussed and applied to the numerical 

simulation of a planar sub-micron gate length GaAs MESFET. The model contains 

energy transport and degenerate statist ics. A generalisation of the 

Scharfetter-Gummel method is given which enables both the electron current 

density and energy flux to be easily coded. Degenerate statist ics are 

included for the case in which the relaxation time is proportional to E r . 

Steady state results are presented - these are arrived at both by iterating 

the transient solution and the direct method based on a modified Newton 

method. 

I Introduction 

In this paper we look at the finite difference approach to the modelling of 

a two-dimensional MESFET. Other methods - the Finite Element method [1,2], 

the Boundary Element method and the Multigrid method [3] can be found 

elsewhere. To illustrate the general theory developed in Section IV, we will 

consider the simulation of a planar sub-micron gate length GaAs MESFET whose 

cross section in the x-y plane is shown in figure 1, with the ends of the 

source, gate and drain at X=SQ, s , gQ g , d and d . The electron density 

n, electron temperature T and potential \ji will all be functions of x, y and 

time t. The equations are: 

(i) the Poisson equation 

2 q 

v 4> = ~(N - n) (1) 
£ d 

where e is the product of the permittivity of the vacuum and the relative 

permittivity of the semiconductor. This equation is to be solved with the 

boundary conditions $=V on the source, $=V on the drain, \p=V +d> on the 
B d g b 

gate where (f> is the built-in potential, and difi/dn = 0 at other par ts of the 
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Fig . 1. Cross s e c t i o n of the MESFET. 

boundary (In this paper, n will represent the unit vector normal to the 

surface). The electric field is 

E = -VI/J ; (2) 

(ii) the current continuity equation (neglecting recombination) 

fln l r 

at 
-V.J q ~ 

where the current density J will have the form 

J = a niVifi) + P T (Vn) + y n(VT ) 
C C e C e 

(3) 

(4) 

for certain coefficients a , 8 and y . The boundary conditions taken here 

are n=2.5N on the source and drain, n=0 on the gate, and an/an=0 elsewhere; 

(iii) the energy transport equation 

aw 
at 

(W-W ) 
= J.E — - V.s (5) 

where ^ is the (position and time-dependent) average electron energy, W=n£, 

T ( £ ) is the energy-dependent relaxation time, and s is the energy flux 

s = a W(V0) + p T (VW) + y W(VT ) 
~ E E e E e 

(6) 

for certain coefficients a , 8 and y . The forms of all the coefficients 
E E E 

will be discussed more fully in section V when particular statistics are 

introduced. 

Having obtained a set of modelling equations, they should always be 

scaled to ensure a good numerical range for the variables [1,4]. 
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II Finite Differences 

We will deal only with the special case of a non-uniform rectangular mesh. 

More general techniques including, for example, mesh refinement [1,5] and box 

generation [6] are described elsewhere. Consider the two-dimensional 

rectangular mesh shown in figure 2. Mesh points will be labelled 0,1,2,..M 

and 0,1,2,..N in the x and y directions respectively. The general mesh point 

will have coordinate (x ,y ). The variable mesh spacings will be h =x -x 
i ] i i+i i 

(i=0,..M-l) and k =y -y (j=l..N-l). The case of uniform mesh is given by 
h =h=const. and k =k=const. The value f(x ,y ) of any function f will be 

i j i , J j 
denoted shortly by f . while its value at the half-points (x +h /2 ,y ), 

i,j i i j 

(x ,y +k /2) and (x +h /2,y +k /2) will be denoted by f , f and 
1 J j 1 1 J j 1+1/2 , / l .J+l/2 

f respectively. 
1+1/2J+1/2 

i + i 

Fig. 2. The mesh. 

Standard formulae exist for first and second order derivatives [7]. The 

important ones for this simulation are listed below (resorting to the 

one-dimensional case temporarily to ease the notation). The half-point 

formula for the first derivative of f is given by 

f 
f - f 

1+1 /2 1 - 1 / 2 

(h + h ) /2 
i 1-1 

(7) 

where the next term -(h -h )f " / 4 has been neglected. This is useful 
l i - i i & 

for evaluating divergences. The second order derivative at x can be written 

f " = 
1 

f' - f' 
1+1/2 1-1/2 

(h + h ) /2 
i 1-1 

(f - f ) /h - (f - f )/h 
1+1 1 i 1 1-1 1-1 

(h + h ) /2 
i i - i 

and the neglected term here is (h -h )f ' " /3. 
1 1 - 1 1 

We often need an expression for the normal derivative at a boundary, in 
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which case i t is very often zero . False nodes can be introduced outs ide the 

boundary but th i s increases s to rage requ i rements . Alternat ively, th i s 

der ivat ive may be expressed a t x=0 in t e r m s of values a t in te rna l nodes by 

h (h +2h )f - (h +h )2f + h 2 f 
r. , _ _ 1 1 0 0 O i l 0 2 , g j 

0 h h (h +h ) 
0 1 0 1 

with a s imilar expression a t x=x . 

Returning t o the case of functions of two var iables , the Poisson equation 
2 

V \jj=g can be discre t ised in the form 

l + i , J i . J _ i . J i - i . J i,J + i i . J _ i , J y i , j - i 

h h k k 
! l l L _ + J L± g = o . (9) 

i.J (h +h ) / 2 (k +k ) / 2 
i i - i j j - i 

In the case of uniform mesh th is reduces to the s t anda rd 5-point formula 

p2ip + p 2 ^ + tfi + $ - 2(l+p2)t/i = P2h2g (10) 
H ri-i,j K M+ij *i,j-i ^i.jfi v ri,j K 6i,j 

4 

where p s k / h . This equation has an e r r o r of order h , while the more accu ra t e 

9-point formula .wi th e r r o r of order h is [8] 

( l O p -2){\jJ +$ ) + ( 1 0 - 2 p 2 ) ( ^ +\h ) 
i-l .J 1 + 1 , J K l . J - 1 r l , j + l 

+ (l+p2)(i£ +ip +$ +<£ -20y§» ) „n 
M - I , J - I y i + i , j - i * i - i , j + i M + i , j + i ^ i , j (11) 

2 2 
= p h (g +g +g +g +8g ) 

F e i - i , j e i + i , J e i , J - i si,J+i s i ,J 

III Solut ion o f Simultaneous Equations 

The d i sc re t i sa t ion of the di f ferent ia l equat ions of t he model general ly gives 

r i s e t o the problem of solving a se t of M+l analyt ical equat ions of the form 

f ( X , X , . . , X ) = 0 (i=0,l , . . ,M), (12) 
i 0 1 M 

where t he M+l values X will r ep re sen t typical physical quant i t i es a t each 

point i. If t h e r e a r e v physical quant i t i es described a t each point , then t he 

top index M is replaced by v(M+l)-l. The method of solution will depend on 

whether all the equat ions a r e l inear or a t leas t one equation is nonlinear . 
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A. Linear Equations 

When equations (12) are linear they take the form 

AX = b (13) 

where A is an (M+l)x(M+l) matrix and b is an (M+l) component vector, both 

with elements which may depend on X. These can be solved by direct methods or 

by indirect methods using iteration. 

(a) Direct Methods. Very often the matrix is tridiagonal and a simple 

solution is available. Suppose that the equations have the form 

a X + / 3 X + 3 - X = 5 (i=0,l,..,M) 
i I - l I I 1 I+l 1 ' ' ' 

and the terms involving a and y do not appear. The standard method of 
0 M 

eliminating down from the first equation and solving the resulting final two 

equations for X and X gives the solution M M-i M
 to 

X 
M 

O' rV - (a )_1p M 

M - l M - l M M 

X = O ' ) S ' - y X 
i i i i i -.-1 

O' T V - (a )_15 
M - l M - l M M 

( i=M-l , . . ,0 ) 
(14) 

where the 0 ' and 5 ' are generated by 

0' = 0 , 8' = 8 
o ' o o o 

0' = 0 - a(p' )"V 
i l i 1-1 i - i 

5' = 6 - a(0' T V 
1 1 i I -1 1-1 

(i=l,..,M-l). 

Efficient coding of this routine is available [9,10]. We can usually get 

away without pivoting in this case because the simulation will probably not 

cause problems with the sizes of the elements of the tridiagonal system. In 

one-dimensional simulations which involve v physical variables at each node 

(for example, i>=3 when the variables are n, p and ip), the equations at each 

node can be grouped so that equations (14) still hold. In that case, however, 

the X, 5 and 8' are v-component vectors and the quantities a , 0 , y and 

P' are vxv matrices. The multiplications in equations (14) are in the correct 

order for matrix multiplication [11]. 

When A is not simply tridiagonal, LU decomposition with partial pivoting 
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and scaling to control the growth of rounding errors may be used [10,12,13]. 

Rounding errors in direct methods can often be eliminated by solving the 

equation Ae=b-AX for the correction e to the computed solution X . 

(b) Relaxation Methods. Consider the iterative process 

Xk+1 = BXk
 + c (15) 

where the iteration matrix B is an (M+l)x(M+l) matrix with constant 

coefficients. If the solution converges to X then equation (15) is equivalent 

to the equation (I-B)X=c. Convergence may be slow if the spectral radius of 

B is close to unity, so instead take a modified iteration process 

c-(I-B)Xk = B'Xk + wc (16) X = X + W 

and adjust the value of the parameter w so that the spectral radius of B' is 

as small as possible. This is the basis of the relaxation method. 

In our original problem given by equation (13), we may write A=L +D+U 

where D is diagonal and L and U are lower and upper triangular with zeros 

on the diagonals. This decomposition suggests the Jacobi iteration 

DXk+1 = b - (L +U )Xk 

o o ~ 
with iteration matrix B=-D~ (L +U ), and the Gauss-Seidel iteration 

o o 
L +D)Xk+1 = -U Xk + b 

o ~ o~ ~ 

with iteration matrix B=-(L +D)~ U . It can be shown [9,14,15] that the 

scheme (16) is convergent only for 0<w<2. If 0<w<l then we have Successive 

Under- Relaxation (SUR) while if Kw<2 we have Successive Over-Relaxation 

(SOR). Further, the Jacobi spectral radius for equation (10) is 

P J 
= 

2 n 
P C O S M+ l 

n 
+ COS •r-r-r N+1 

2 
1 + p 

with optimal choice w = 
r , 2,1/2 

1 + (1-Pj ) 

This is not the exact value for the equation (11) but it very often works 

well enough. See also [16]. The value of w may also be changed as the 

iteration progresses [17], for example, Chebyshev Acceleration. 
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B. Non-linear Equations 

The standard method here is the Newton-Raphson method. If X and X=X +5X are 

the computed and true solution, expansion of (12) to f i rs t order gives 

df 
JSX = -f(X ) where J = — i 

c ij 3X 
J 

is the Jacobian. This is a set of linear equations which can be solved (among 

other methods) using the iteration scheme 

Jk5Xk = -£(Xk) , Xk+1 = Xk + aSXk 

where a is taken such that (Kail to avoid overshoot. It is usually necessary 

to take a small in the early stages of the iteration and then to steadily 

increase it as the iteration progresses. 

An alternative Newton method has been found to make iterations go more 

smoothly. Instead of solving for 5X we solve directly for X + : 

J£k + 1 = J ( £ k + a 5 2 k ) = J £ k - a £ k • (17) 

The advantages here are that we can usually take larger values of a and that 

fewer initial guesses need to be made. When J *0 (1=0,..M) then (17) becomes 

r M 

Xk + 1 = J - 1 (-af + JXk) - I J Xk + 1 

1 " I ~ ~ ' j * , 1J J -

with corresponding iteration process 

(18) Xk + 1 = (l-w)Xk+1
 + wJ "^ ( - a f + JXk) - S J Xk + 1 

where f=£(X ) and J=J(X ). If X represents a natural grouping of v quantities 

at each point (that is, X is a ^-component vector) then equation (18) still 

holds with J being a vxv nonsingular matrix, and w as a vxv diagonal matrix 

with separate relaxation factors down the diagonal. 

Evaluation of the Jacobian can be the most time-consuming part of the 

operation. It is possible to differentiate the functions f numerically using 

a ^ _ f(xo , . . ,x j +AX j , . . ,xM)-f(xo , . .x j , . .xM) 
ax ~ AX 

J j 

where the AX are suitable increments. If the AX are too small then roundoff 
J J 
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errors can swamp the calculation, while convergence will be linear if they 

are too large [18]. Methods could be used in which, say, standard functions 

are differentiated explicitly while, for example, mobility curves fed in from 

other simulations could be differentiated numerically. Also using Broyden's 

rank one correction it is not necessary to evaluate J at each iteration [19]. 

IV Discretising the Current Continuity and Energy Equations 

An explicit time discretisation of the current continuity equation will only 

work if the timestep At is excessively small [20], while a fully implicit 

Crank-Nicholson scheme [12] is difficult to solve. The linearised 

semi-implicit scheme [21] is more satisfactory unless At is taken too large. 

This limitation can be avoided if we use, in the case of constant T , the 
e 

Scharfetter-Gummel method in which we take an exponential variation in the 

carrier deviations between nodes [22,23]. 

The following is a generalisation of the Scharfetter-Gummel method when 

T is not constant throughout the device. Equations (4) and (6) can be 
written in general form 

V = a(Vifi)B + 3TJV6) + ye(vT ) (19) 

where (Vsj, e^n) for the current density and (V=s, e=W) for the energy flux. 

For numerical purposes only we now make the assumptions that , in the interval 

(i , jMi+l,j) , the quantities v1 ,̂ VT ,̂ /3, <x//3 and y /0 are constants. The x -

component of equation (19) becomes 

3j) 
dx 0 T 3 x e + P T S 

e e 

0 • Hi) 
e v ' I+1/2.J 

which has integrating factor 

exp "ffV I ST a i a ^ l 
J [p TJ)xe $ T a^J dx = T (20) 

where r = 1 + * W(dT) 
£ P S x 3 x 

(1+1/2,j). The resulting equation is 

dx 

and quantities y /p etc are evaluated at 

(9T r ) = T 
M / 2 , j 

which can be integrated between x=x and x=x and re-arranged to give 
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(V 3 
x 1+1/2J 

1+1/2,j -§(tf» -0 ) ,T , T |e 
. j l . j j 1+1, J 

<r/p(^.Aj,J./Mje
y' (21) 

wi th a s imi lar express ion for (V ) . H e r e , C is t he function defined 
y l.J+l/2 

by 

C (x.y.z) s p ( y , z ) B f X
n ^ y f 

* (. P l y , 2 ) 
(y*z) (22) 

where p(y,z) = ( z - y ) and B(t) = 
l n ( z / y ) 

One impor tan t p roper ty of th is C-function, namely 

is the Bernoulli function. 

el - I 

l i m i t C (x.T ,T) 
T-H a 0 

0 

T B(x/T ) 
0 0 

is useful for applying t o models in which the e lec t ron t e m p e r a t u r e is a 

cons tant T , and the original Scharfe t te r -Gummel express ion is then obtained. 

I t is necessary t o avoid overflows and underf lows when evaluat ing the 

C-functions. The usual method [1] is t o make a piecewise machine-dependent 

approximat ion for B(t). The derivat ive of t he Bernoulli function can be 

approximated by 

B ' ( t ) = -
( t - 2 ) / 4 

B ( t ) 
l - B ( t ) - t 

f o r t £ t ^ t 
2 3 

o t h e r w i s e . 

V E v a l u a t i o n of t h e C o e f f i c i e n t s 

The Fermi in tegra l F (i?) is defined a s 
r 

Fr(7j) s r ( r+ l ) _ 1 Jy r ( l + ey _ x)_ 1dy where r(r+l) = ( y V y d y 

o o 

This function has been extensively approximated and tabu la ted [24]. Write k 

as Bol tzmann's cons tant , h a s Planck 's cons tan t , u a s the mobility, m as 
" e 

t he effect ive e lectron mass , -n^iE^-EJ/lk T ), and take t he energy dependence 

of the re laxa t ion t ime a s x«(E-E ) r . The f i r s t few moments of the Boltzmann 
c 

t r a n s p o r t equat ion then give [25,26] 
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3/2 
11 = A T e F l / 2 ( 7 , ) W h e r e A = 2(2l tk m ) 3 / 2 / h 3 , 

e w* B e P ' 

W = ^ B T e n F 3 , W / F
1 / 2 W • 

J = nn(-qVip + k T Vrj) + I ( 7 T ) / T , 
~ B e 2 e e 

q s = - I (-qVip + k T Vy) - I ( v T ) / T 
~ 2 B e 3 e e 

where 

I s p ( r + - 5 ) k T F / F 
2 2 B e r+3/2f i 

I = I f r A j F /F 
3 2 2 B e r+5/27 i 

r+1/2 

r+3/2 . 

After extensive manipulation and using the constant effective mass 

approximation, it is found that J and s have the forms (4) and (6) where 

a = -qjj. 
c Mf^ 

fi = k u F / F 
C B l/2f -1/2 

y = k uf(r+-)F /F - ?F /F 1 
C B { 2 r+3/2 ' r + l / 2 2 V -1/2 

a = -M(r+-)F F /(F F ) 
E 3 H 2 ' r + 3/2 l / 2 / l f r + l / 2 3/2 J 

pE - - 5 V ^ F
r + 3 / 2 / ^ r + 1 / 2 ) 

and F =F (TJ) throughout. 

At certain stages of the numerical implementation it is necessary to find 

•n and Te at each point given the values of n and W. From the above, it may be 

shown that 

Fi/2(7>)5/F3/2(Ti)3 = 54hp
6(8,tmer3 n5/W3 (23) 

and this may be inverted to give tj and hence T from 
e 

Te = K/2W*BnF3/2(r,)] . 

Conversely, to find „ and W given n and Te> r» may be calculated at each point 

by inverting the equation 
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3/2 > 
F l-n) = n/(AT J'n 

1/2 ' e 

(24) 

and calculating W from 

W = -k T nF (T))/F (TJ) . 
2 B e 3/2 i 1/2 

Both these inversions must be done at each grid point. Once the functions 

F and F have been programmed, inversion is straightforward since the 
1/2 3/2 

left hand sides of equations (23) and (24) are strictly increasing functions 

of T). 

VI Implementation for the MESFET 

We now apply the preceeding results to the simulation of the MESFET model 

outlined in section I. Referring to figure 1, the dimensions taken were 

s =O.OMm, s =0.2jim, g =0.6jnm, g =l.lfim, d =1.6fim and d =1.8jim. The total 

thickness including substrate was 0.45(im. An abrupt junction at y=0.35fim was 

taken with 

for Ojxm ^ y £ 0.35fim 

0. 35Mm < y ^ 0. 45jim. d 

f 102 3 m " 3 

1 1019 m " 3 

Monte Carlo simulations and experimental data on the steady state transport 

characteristics provide curves of £ and x in terms of the static electric 

field E which is used as an intermediate parameter. This enables x to be 
ss 

found in terms of £. The mobility is given by 

300fi 
fi = T 

0 

and E=4xl0 5 \ 

8 . 5 x l 0 4 E 3 

1 + 
H ( l - 5 . 3 x l O " 4 T )E 4 

0 0 0 
1+(E/E ) 4 

L o J 

rm . All boundary condit 

K 0-8 where u = 
0 1 + (N / 1 0 2 3 ) 1 / 2 

equation (8) and its equivalents with all derivatives zero. The 

quantities J and s were coded at the half points using appropriate values in 

expression (21). Three solutions were performed: the transient solution, the 

steady state reached by iterating the transient solution, and the direct 

solution of the steady state. 

—14 

(a) The transient solution. A timestep At=10 s was used. The Poisson 

equation (11) was used to extract an expression A for \j> in terms of the 

other quantities, and was solved by iterating the equation 
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ill = (1-w )i/» + w A 
M.J psl M,J psi 1,J 

The current continuity and energy equations (3) and (5) were similarly solved 

by coding the C functions with the appropriate quantities a , . . .y . It was 

found that the separate relaxation factors w =1.4, w =0.8 and w =0.5 gave 
psi n T 

the fastest iteration. At each timestep, the three equations were iterated 

separately inside an overall iteration. A mixture of convergence tests was 

used. In the case of the ip iteration, we required convergence at each point, 

that is, we required that I \p -\jil I had to be less than some prescribed 

value at every point, where 01 was the value at the previous iteration. The 

same test was applied to the electron temperature T . In the case of the n 
e 1 • J 

we applied a weaker test by requiring that only the average relative 
difference ) | n -nl | / n be smaller than some prescribed value. It was 

L' l,J l .j1 i.j 

found that this average condition gave a smoother time plot of the total 

current 
0.45 

0 

(b) Iteration to the steady state. The method of (a) was used but with no 

iteration of the equations at each timestep. A total of 2000 timesteps was 

used, giving a device time of 20ps. Results for \p, n and T are shown in 

figure 3 (viewed from corner A in figure 1) for the case r=-l . 
T 

(c) Direct method. A natural grouping X =(0 , n , T ) exists at 
~MJ I»J *.J e*»J 

each gridpoint (i,j). Put all d/dt terms zero in equations (1), (3) and (5) 
and write the equations generally as G =0, G =0 and G =0. The Newton method 

1 Z 3 
applied at each point gives 

ASX + B5X + CSX + DSX + E5X = -G 
~i-l,j ~i+i,j ~i,j ~i,j-i ~i,j+i 

J = J + eSE /dt 
tot x x 

dy 

where A =SG /dip etc are 3x3 matrices. Writing y =X +a5X , 
ml m 1-1, J & M,J ~1,J ~1,J 

modified Newton method (18) becomes 

the 

k+l ,, x k+l y = ( I -w)y + wC 
M.J M . j 

- a G + AXk + BXk + CXk + DXk +EXk 

~ i - i , j ~ i+i ,J - l . J - l . J - i - l . J + i 

. k + l „ k + l _, k+l _ k+l ^ 
- Ay - By - Dy - E y 

* I - 1 J ^ i + i . J M . j - i M,j+iJ 

where w is the diagonal matrix with nonzero elements w , w and w . This 
psi n T 

routine is fragile in the early stages, and for the first few Newton 

iterations it is necessary to take a very small (typically 0.01), n to be 

kept positive and T to be not less than T . 
K el.j 0 
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(a) 

(b) 

(c) 

Fig.3. Steady-state results for (a) potential ip, (b) electron density n, 

and (c) electron temperature T 
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