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Abstract

Various numerical routines are discussed and applied to the numerical
simulation of a planar sub-micron gate length GaAs MESFET. The model contains
energy transport and degenerate statistics. A generalisation of the
Scharfetter-Gummel method is given which enables both the electron current
density and energy flux to be easily coded. Degenerate statistics are
included for the case in which the relaxation time is proportional to E".
Steady state results are presented - these are arrived at both by iterating
the transient solution and the direct method based on a modified Newton

method.

I Introduction

In this paper we look at the finite difference approach to the modelling of
a two—dimensional MESFET. Other methods - the Finite Element method [1,2],
the Boundary Element method and the Multigrid method [3] can be found
elsewhere. To illustrate the general theory developed in Section IV, we will
consider the simulation of a planar sub-micron gate length GaAs MESFET whose
cross section in the x-y plane is shown in f igure 1, with the ends of the
source, gate and drain at x=s, s, go. g d0
n, electron temperature Te and potential ¢ will all be functions of x, y and

and dx' The electron density

time t. The equations are:

(i) the Poisson equation

2 q
v = (N, - n) W

where € is the product of the permittivity of the vacuum and the relative

permittivity of the semiconductor. This equation is to be solved with the

boundary conditions ¢=VS on the source, gt'::\@'d on the drain, yY=V +¢b on the
g

gate where ¢b is the built-in potential, and dy¥/8n = 0 at other parts of the
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Fig. 1. Cross section of the MESFET.

boundary (In this paper, n will represent the unit vector normal to the
surface). The electric field is

g = -V ; (2)
(ii) the current continuity equation (neglecting recombination)

on _ lg; (3)

at ~ q '~

where the current density J will have the form
J = oan(Wy) + BT (Vn) + ¥y n(VT ) (4)
~ C C e (o] e

for certain coefficients . BC and v The boundary conditions taken here

are r1=2.5Nd on the source and drain, n=0 on the gate, and dn/dn=0 elsewhere;

(iii) the energy transport equation

(W—WOI

7 = JE-——-Vs (S)
(&)

where £ is the (position and time-dependent) average electron energy, W=n§,

T(&) is the energy-dependent relaxation time, and s is the energy flux
s = chW(Vtﬂ) + BETe(VW) + ;yEW(VTe) (6)

for certain coefficients o BE and afE. The forms of all the coefficients
will be discussed more fully in section V when particular statistics are
introduced.

Having obtained a set of modelling equations, they should always be

scaled to ensure a good numerical range for the variables [1,4].
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II Finite Differences

We will deal only with the special case of a non-uniform rectangular mesh.
More general techniques including, for example, mesh refinement {1,5] and box
generation {6] are described elsewhere. Consider the two-dimensional
rectangular mesh shown in figure 2. Mesh points will be labelled 0,1,2,..M
and 0,1,2,..N in the x and y directions respectively. The general mesh point
will have coordinate (xi,yj). The variable mesh spacings will be hl=xl+1—xi
(i=0,..M-1) and kj=yj+1—yJ (j=1..N-1}). The case of uniform mesh is given by
hl=h=const. and kj=k=const. The value f (xl,yj) of any function f will be

denoted shortly by f‘l v while its value at the half-points (x1+h‘/2,yj),

(Xl,yj+kj/2) and (xi+hl/2,yj+kj/2) will be denoted by fl+1/2,j’ fi,j+1/2 and
f 11/ J01/2 respectively.
y . .
J :
y .s ......... . .§
§ hi
X X X

i P+l

Fig. 2. The mesh.

Standard formulae exist for first and second order derivatives [7]. The
important ones for this simulation are listed below (resorting to the
one-dimensional case temporarily to ease the notation). The half-point

formula for the first derivative of f is given by

’ f -
fi - 1+1/2 i-172 (7)
(h + h )r2
i 1-1
where the next term —(hi—hH)f i”/’4 has been neglected. This is useful

for evaluating divergences. The second order derivative at x can be written

i+1/2 i-1/2

f’ - f (f -fi/h -(f -f J/h
_ 141t i io1-17 -1

(h +h )2 (h +h )72
i -1 i 1-1

and the neglected term here is (hi—hl_l)fi'“/’&

We often need an expression for the normal derivative at a boundary, in
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which case it is very often zero. False nodes can be introduced outside the
boundary but this increases storage requirements. Alternatively, this
derivative may be expressed at x=0 in terms of values at internal nodes by
2 y
hl(hl+21-10}f0 - €h0+h1) f1 + h0 fz

fr = - (])
h h (h +h )
001 0 1

with a similar expression at x=xM.
Returning to the case of functions of two variables, the Poisson equation

Vztf;:g can be discretised in the form

+ -g = 0 (9)
(h+h  )/2 (k +k  )/2 L)
1 i-1 1 1-1

In the case of uniform mesh this reduces to the standard 5-point formula

2 2 2 2 2
- = O
P lfll-l.J TP tﬂlﬂ,} ¥ ll‘l,J-l ¥ wl,jﬂ 2(1+p )wld ph gl-l 1o

where p=k/h. This equation has an error of order hq, while the more accurate
9-point formula.with error of order h® is [8]

(0p°-2)y, | W, )+ 10207y, |+

)
141, 171, )+1

+ (1+p2)(y "

W Y

1—1,]-1+ i+1,j-—1+ 1-1,_]+1+ i+1,j+1—20¢‘1,j) (11)

=p’n(g,_ +g

1,]} i+1,j+gi, g +8g )

J-1 7L 1,)

III Solution of Simultaneous Equations

The discretisation of the differential equations of the model generally gives

rise to the problem of solving a set of M+l analytical equations of the form
FX,X,...X}) = 0 (i=0,1,..,M), (12)
A M

where the M+l values Xl will represent typical physical quantities at each
point i. If there are v physical quantities described at each point, then the
top index M is replaced by v(M+l)-1. The method of solution will depend on

whether all the equations are linear or at least one equation is nonlinear.
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A. Linear Equations
When equations (12} are linear they take the form

AX = b (13)

where A is an (M+1)x(M+]) matrix and b is an (M+l) component vector, both
with elements which may depend on X. These can be solved by direct methods or

by indirect methods using iteration.

(a) Direct Methods. Very often the matrix is tridiagonal and a simple
solution is available. Suppose that the equations have the form

o&in_l + BIXl + a’ixl-(-l = Sl (l=0,1,-.,M)

and the terms involving . and 7, do not appear. The standard method of
eliminating down from the first equation and solving the resulting final two

equations for XM_1 and XM gives the solution

— ’ -1 _ -1 -1 . -1, _ -1
XM ((Bm-x) LAV (OCM) Bm] [(BM—I) aM-l (aM) 6M]
o (14)
Xi = (Bl) {61 -’a’iXhl} ( i=M-1,..,0)

where the B‘; and 6; are generated by

Bo - Bo ’ % = 60

£ —_ — ’ -1

B, = B OC1(81-1) LA

O (i=1,..,M-1}.

o, = 9, - ai(Bi-l) 61-1

Efficient coding of this routine is available [9,10]. We can usually get

away without pivoting in this case because the simulation will probably not
cause problems with the sizes of the elements of the tridiagonal system. In
one-dimensional simulations which involve v physical variables at each node
(for example, v=3 when the variables are n, p and y), the equations at each
node can be grouped so that equations (14} still hold. In that case, however,
the Xx' 51 and 8; are v-component vectors and the quantities a«, Bx' v, and
B’l are vxv matrices. The multiplications in equations (14) are in the correct
order for matrix multiplication [11].

When A is not simply tridiagonal, LU decomposition with partial pivoting
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and scaling to control the growth of rounding errors may be used [10,12,13].
Rounding errors in direct methods can often be eliminated by solving the

equation Ag=g—A§c for the correction ¢ to the computed solution ?SC.

(b) Relaxation Methods. Consider the iterative process

X' = BX" + ¢ (15)

where the iteration matrix B is an (M+1)x(M+l) matrix with constant
coefficients. If the solution converges to X then equation (15) is equivalent
to the equation (I—B)')v(=g. Convergence may be slow if the spectral radius of

B is close to unity, so instead take a modified iteration process

X o XK. w[s—(I—B)gk] = B’gk + We (16)

~ ~

and adjust the value of the parameter w so that the spectral radius of B’ is
as small as possible. This is the basis of the relaxation method.

In our original problem given by equation (13}, we may write A=L0-!-D+U0
where D is diagonal and L0 and Uo are lower and upper triangular with zeros

on the diagonals. This decomposition suggests the Jacobi iteration
px“' = b - (L +U X"
~ ~ Q Q' ~

with iteration matrix B=—D'1(L0+U0), and the Gauss-Seidel iteration

L +D)x*"!
0 ~

= -UOZ(k + B

with iteration matrix B=—(LO+D)-1U0. [t can be shown [9,14,15] that the
scheme (16) is convergent only for O<w<2. If O<(w<{l then we have Successive
Under- Relaxation (SUR) while if IKkw¢(2 we have Successive Over-Relaxation

(SOR). Further, the Jacobi spectral radius for equation (10) is

pzcos ™+ cos -
- M+l N+l
Py 2
1 +p
. . . 2
with optimal choice w =
2.1/2
1+ (l—pJ )

This is not the exact value for the equation (11) but it very often works
well enough. See also [16]. The value of w may also be changed as the

iteration progresses [17], for example, Chebyshev Acceleration.
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B. Non-linear Equations

The standard method here is the Newton-Raphson method. If §C and §=§C+6§ are
the computed and true solution, expansion of (12) to first order gives

Eifi
JoX = _z(f}fc) where J = =——

ij 4 e
is the Jacobian. This is a set of linear equations which can be solved (among

other methods) using the iteration scheme

Faxt = -fx9, X = xX* 4+ sk
where o is taken such that O<a<l to avoid overshoot. It is usually necessary
to take « small in the early stages of the iteration and then to steadily
increase it as the iteration progresses.

An alternative Newton method has been found to make iterations go more

smoothly. Instead of solving for 5§k we solve directly for z{k“ :

X = XS+ wsX) = axE - o (17)

~ ~

The advantages here are that we can usually take larger values of a and that
fewer initial guesses need to be made. When Ju:t() (1=0,..M) then (17) becomes
k+1 -1 k M Kk
¥ = 3 MN-af + x5 - T x*
i it ~ ~ 1 1)

with corresponding iteration process

X = a-wx K e wa 7! [(—oaf + XY - 21 x““] (18)
1 i ~ 1 1y
1

where f=f (z'(k) and JEJ(Z{k). If X represents a natural grouping of v quantities
at each point (that is, X1 is a v-component vector) then equation (18) still
holds with Ju being a vxv nonsingular matrix, and w as a vxv diagonal matrix
with separate relaxation factors down the diagonal.

Evaluation of the Jacobian can be the most time-consuming part of the

operation. It is possible to differentiate the functions f . numerically using

X,...,X+AX ,.., - .. ..

af i} F(X, X X)) F(X, xj, X,

8X AX
J ]

where the ij are suitable increments. If the AXJ are too small then roundoff
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errors can swamp the calculation, while convergence will be linear if they
are too large [I8]. Methods could be used in which, say, standard functions
are differentiated explicitly while, for example, mobility curves fed in from
other simulations could be differentiated numerically. Also using Broyden’s

rank one correction it is not necessary to evaluate J at each iteration [19].
IV Discretising the Current Continuity and Energy Equations

An explicit time discretisation of the current continuity equation will only
work if the timestep At is excessively small [20], while a fully implicit
Crank-Nicholson  scheme {12] is difficult to solve. The linearised
semi-implicit scheme ([21] is more satisfactory unless At is taken too large.
This limitation can be avoided if we use, in the case of constant Te, the
Scharfetter—-Gummel method in which we take an exponential variation in the
carrier deviations between nodes [22,23].

The following is a generalisation of the Scharfetter-Gummel method when
Te is not constant throughout the device. Equations (4) and (6) can be

written in general form
V = «Vyle + BT (Ve) + ye(VTe) (19)

where (V=J, &=n) for the current density and (V=s, 8=W) for the energy flux.
For numerical purposes only we now make the assumptions that, in the interval
(i,j)+(i+1,j), the quantities Wy, VTe, B, a/B and y/B are constants. The x-

component of equation (19) becomes

ae + ¥y 13T
ax

\'4
Efa?*'%féq = %[ﬁﬂ
e 1+1/2,]

which has integrating factor

7 13T ol dy), = r
emU&Ta BTB] ]‘ T (20)
where r = % + % g—ﬁ{g—;{] - and quantities y/B etc are evaluated at

(i+1/2,j). The resulting equation is

8 ry _ r-1 x
é‘;( eTe ) - Te {—E]
4172}

which can be integrated between X=X and X=X and re-arranged to give
+
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_ B _« -
(Vx)l+1/2,j - M[CV/’B[ B(wl-rl,j wl,j)' T1+1,j’ Ti.j]61+1,j

h
1
< |2 v )T ,T 0 (21)
P/BB T+ LT LY 1e1,)) 1)
with a similar expression for (Vy)l sz Here, C is the function defined
by
x-aly-z)
= Rl T A4 22
Ca(X.y,z) p(y,z)B[ ply,z) ] (y=z) (22)
where ply,z) = (z-y}) and B(t) = t is the Bernoulli function.
In(z/y) ot ]

One important property of this C-function, namely

1%{?%; Ca(x,TO,T) = TOB(x/TO)
is useful for applying to models in which the electron temperature is a
constant To’ and the original Scharfetter-Gummel expression is then obtained.
It is necessary to avoid overflows and underflows when evaluating the
C-functions. The usual method [1] is to make a piecewise machine-dependent
approximation for B(t). The derivative of the Bernoulli function can be

approximated by

(t-2)/4 for t, = t =< t3
B'(t) = 3 Bt)
—,C—[I—B(t)—t] otherwise.

V Evaluation of the Coefficients

The Fermi integral F‘r(n) is defined as

[» 4] [24]
Fr(n) = F(r+l)-lfyr(1 + &) lay where (r+l) = -[yre_y dy
0 0

This function has been extensively approximated and tabulated [24]. Write kB
as Boltzmann’s constant, hP as Planck’s constant, p as the mobility, m_ as
the effective electron mass, nE(EF—Ec)/(kBTe), and take the energy dependence
of the relaxation time as ‘Eoc(E—Ec)r. The first few moments of the Boltzmann

transport equation then give [25,26]
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n = AT % (n) where A= 2(2nk m )S/Z/h 3 .
e 172 B e P
3
W= EkBTenFaxz(m/ lez(m ’
J = un(-qvy + kBTeVn) + Iz(VTe)/Te ,
qs = —Iz(—qW; + kBTeVn) - Ia(VTe)/Te
where
_ 5
12 = “n(r+é)kBTeFr+3/ Fr+1/2
7
I. = I (r+)kTF F
3 2 2 B e r+5/ r+3/2

After extensive manipulation and using the constant effective mass

approximation, it is found that J and s have the forms (4) and (6) where

@, = -qu

BC = kB“FIIZ/F—l/Z

= s -3
alc - kB“((r+2)Fr+3/2/Fr+l/2 2F1/2/F—1/2]

2 5
o = 5“(”5)1:”3/2171/2/ (Fr+1/2F3/2)

2 )
B - —C-ikB“(F+E)Fr+3/2/(qFr+1/2)

=2 5] S —(r+!
3’5 B 3kBu(F+2) [ZFI‘+3/2/ FN-I/Z (r+2)Fr+5/2FI/2/(Fr+1/2F3/2)] /9

and F 1EF i(17) throughout.
At certain stages of the numerical implementation it is necessary to find
7 and Te at each point given the values of n and W. F rom the above, it may be

shown that
5 3 _ 6 -3 5, 3
F /F3/2(7}) = 54h_"(8mm ) n’/W (23)
and this may be inverted to give  and hence T from
(-3
= 2
Te - 3WFI/2(n)/[anF3/2(n)] :

Conversely, to find n and W given n and T, 7 may be calculated at each point
[

by inverting the equation
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_ 372
F _(m = nf(AT ™) (24)
and calculating W from
3
W= EkBTenFafz(m/ lez(m )

Both these inversions must be done at each grid point. Once the functions
F1/2 and F3/2 have been programmed, inversion is straightforward since the
left hand sides of equations (23) and (24) are strictly increasing functions

of 7.

VI Implementation for the MESFET

We now apply the preceeding results to the simulation of the MESFET model
outlined in section 1. Referring to figure 1, the dimensions taken were
0=0.0p.m, sl=0.2pm, g0=0.6pm, g1=1.1p.m, d0=1.6pm and d1=l.8;.:m. The total
thickness including substrate was 0.45um. An abrupt junction at y=0.35um was

taken with

1023 m ° for Oum = y = 0.35um

10" m™® 0.35um < y = 0. 45um.

Monte Carlo simulations and experimental data on the steady state transport
characteristics provide curves of & and T in terms of the static electric
field E’.ss which is used as an intermediate parameter. This enables T to be

found in terms of £. The mobility is given by

4_3
300k, 1+ SQSMO-E 2 0.8
M= T yo(l—S.SxIO TOIE0 where By = —3 12
0 - 1+ (N /10 )
1+(E/E0)

and E=4x10°Vm™. All boundary conditions 8/8n=0 were implemented using
equation (8) and its equivalents with all derivatives zero. The
quantities J and s were coded at the half points using appropriate values in
expression (21). Three solutions were performed: the transient solution, the
steady state reached by iterating the transient solution, and the direct

solution of the steady state.

(a) The transient solution. A timestep At=10"*s was used. The Poisson
equation (11} was used to extract an expression Alj for tp” in terms of the

other quantities, and was solved by iterating the equation
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g, = U-w Y

+w A
i,) psi " 1,]) psi 1,)

The current continuity and energy equations (3) and (5) were similarly solved
by coding the C functions with the appropriate quantities CORPPNY It was
found that the separate relaxation factors wpsl=1.4, wn=0.8 and wT=0.5 gave
the fastest iteration. At each timestep, the three equations were iterated
separately inside an overall iteration. A mixture of convergence tests was
used. In the case of the y iteration, we required convergence at each point,
that is, we required that le'J-wll’JI had to be less than some prescribed
value at every point, where yl was the value at the previous iteration. The
same test was applied to the electron temperature Te. In the case of the nl’ 5
we applied a weaker test by requiring that only the average relative
difference Zlnu—nlml/nl’J be smaller than some prescribed value. It was
found that this average condition gave a smoother time plot of the total
current

0.45
J = J. [J + €0E /at]dy
X X

(b) Iteration to the steady state. The method of (a) was used but with no
iteration of the equations at each timestep. A total of 2000 timesteps was
used, giving a device time of 20ps. Results for ¥, n and Tc are shown in
figure 3 (viewed from corner A in figure 1) for the case r=-1.

, n, T )T exists at
1,J 1) el,)

each gridpoint (i,j). Put all 8/8t terms zero in equations (1), (3) and (5)

(c) Direct method. A natural grouping 2'(1 J=(w

and write the equations generally as Gl=0, Gz=0 and G:s:O' The Newton method

applied at each point gives

ASX + BSX + C8X + D8X + E8&X = -G
~]- ~1+1,) ~1,J ~1,}

1,) -1 ~1,J+1 .

where A =8G /4y etc are 3x3 matrices. Writing y, =X +adX , the
ml  m  i-1,) L) ~1,) 0 ~1,)

modified Newton method (18) becomes

an = (I—w),xk+1 + wc! [—ocG + AX*  + BX* o+ cx* + DX*  +EXK
S ¥ 8 | ~ ~1-1,) ~1+1,) ~l ~1,J-1 ~],J+

k+1 k+1 k+1 k+1
ALy By Dzl,l-l-Ezl,Jﬂ]

where w is the diagonal matrix with nonzero elements w pw and W, This
ps n

routine is fragile in the early stages, and for the first few Newton

iterations it is necessary to take « very small (typically 0.01), n to be

kept positive and TelJ to be not less than To'
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