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We present the simulation of both the equilibrium conditions and the current characteristics 
of the dual-gate FET. We use a new numerical technique for computing electronic states 
in confined micro-systems based on a solution of the time-dependent Schrodinger equation 
which utilizes propagation of the wave-function in the imaginary time domain. Our results 
show resonant tunneling peaks and negative differential resistance in the drain-current/gate-
source voltage characteristics that are in good agreement with experiment. 

The success of resonant tunneling diodes in applications of high-speed circuits has led 
naturally to the development of three-terminal resonant-tunneling devices. In the dual-
gate field-effect transistor (Figure la ) , parallel potential barriers can be induced in a two-
dimensional (2D) electron gas of a MODFET structure [l]-[4]. If the gate biases are separate, 
one barrier can be used as a tunneling injector while the other can be used as an energy 
spectrometer [1, 4]. With the gates interconnected, Chou et al. have demonstrated negative 
differential resistance (NDR) in the drain current/gate-source voltage characteristics under 
illumination at T = A.2K [2]. Simultaneously, Ismail et al. showed the same characteristics 
without illumination [3]. The experimental drain-source current versus gate-source bias 
curve is shown in Figure (2a) where the thermionic emission current has been subtracted [3]. 
The measurements were taken at T = 4.22T with the drain-source bias set at 0.2 mV. The 
resonant tunneling peaks for the first three quasi-bound states in the wire are clearly seen. 
In this paper we present a self-consistent Poisson and time-dependent Schrodinger equation 
solver which successfully simulates both the equilibrium and current characteristics of the 
dual-gate F E T of [3]. The device under consideration is shown schematically in Figure ( l a ) . 
In this investigation the two gates are connected. 

The major difficulty in modeling the current-voltage characteristics of the dual-gate F E T 
resides in an accurate computation of the quasi-bound states between the double-barrier 
under a lateral electric field. The difficulty is compounded by the presence of a continuum 
of 2D states outside the barriers. In this analysis, we assume the structure to be periodic in 
the x-direction and choose the distance of the region outside the barrier to be large enough 
so that no interaction, either electrostatically or quantum mechanically, occurs between two 
successive double-barrier wells. Then we consider only the bottom two quasi-bound states 
and assume a continuum of states outside the barriers starting with the ground state energy 
level E2D- This approximation greatly simplifies the calculations as seen below. 

By imposing periodic boundary conditions in the x-direction, solving the Poisson equation 
is greatly simplified. With the utilization of Fourier transforms in the x-direction we are able 
to effectively decouple the x and y-directions in (kx,y) space, solve the Poisson equation in 
this space, and then take the inverse Fourier transform in order to obtain the potential in 
(x,y) space. The success in decoupling the two directions insures quick computations of the 
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Fig. 1 (a) Schematic diagram of the dual-gate field-effect transistor, (b) The conduction 
band-edge of a dual-gate FET under source-drain bias showing a net tunnel current 
due to the imbalance in the energies of electrons between the left and the right side of 
the double-barrier (shaded regions). The quasi-bound levels are labeled Eqbi and Eqh2. 
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Fig. 2 (a) Experimental resonance drain-source current (After Ismail et. al [3]). Calculated 
resonance drain-source current as a function of gate bias showing the peaks due to the 
first two quasi-bound levels for (a) Lx= 600 A, (b) L*= 750 A, and (c) Lx= 900 A. 
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Poisson equation. 
The method we utilize to obtain the eigenstates of the system in equilibrium is based on 

the split-operator propagation method [5] using imaginary time propagation [6, 7]. In the 
split-operator propagation scheme, the kinetic operator and potential operator are used to 
propagate the wave function separately according to 

ip(x,y,t-\- At) ~ e « e =>* e » ip(x,y,t) (1) 

for each successive time step At . Here Ks(x,y) is the kinetic energy operator and V ( E , T / ) is 
the electric potential. In this way, the calculation of the wave function for each successive time 
step is relatively straight forward. The exp(—iV(x,y)At/2h) terms are scalar and the KEV 

term can be easily calculated by using an approximation given in [6], which reduces to the 
inversion of a tridiagonal solver with the use of finite difference methods. The kinetic energy 
operator in the x-direction is more complicated but we can once again take advantage of the 
periodicity by using Fourier transforms. As with the Poisson equation solver, this method 
successfully decouples the x and y-directions, allowing quick one-dimensional calculations. 

The complete algorithm includes self-consistently solving the Poisson and Schrodinger 
equations along with the expressions for the charge distribution. The ground state is ob
tained through the propagation of an initial wave packet according to Equations (1) in 
imaginary time {t = —tr), and the excited states are constructed by using Gram-Schmidt 
orthonormalization, which insures orthonormality between all the states in each time step. 
Between the barriers, one-dimensional statistics are used to calculate the charge, while out
side the barriers, two-dimensional statistics are used. To further simplify the calculations, 
we assume T = 0 K because we are at such low temperatures (T = 4.2 K). This means all 
the occupied states are of the first sublevel family in the y-direction. The scheme is very 
stable and the convergence is quite fast because the two dimensions have been decoupled. 

For the device under the application of a drain-source bias, we assume a linear electric 
field with no changes in the charge distribution because of the extremely small drain-source 
voltage (VDS = 0.2mV). Under a linear field Fx, the new Hamiltonian reads 

H = r ^ ( * V - qFxAtf + V(x,y). (2) 

Because the spatial periodicity is maintained, Fourier transform methods can still be utilized. 
However under the application of an electric field, we now propagate the wave function 
according to Equation (1) in real-time rather than imaginary time. In this new guage, the 
quantum mechanical current density carried by the nth quasi-bound state reads 

jn = A ^ (-iftvik - ^ r c W ) . (3) 

The total current from left to right is calculated by integrating j n over the y and z-directions 
and summing over all the states above the quasi-Fermi level Ef and is given by 

lLR = 2qI>J-£- £ fdy jn(y)jEf - Eqbn. 
V B Exrf JV 

(4) 
En<Ef 



A similar expression for the tunneling current from right to left can be obtained by sub
stituting L for R and R for L in Equation (4). The total current is simply the difference 
between the two contributions. Figure ( lb) shows that if the n t h quasi-bound state {E^) 
lies between the Fermi level on the left (Ef) and the lowest 2D sublevel (E2D), electrons to 
the left of the double-barrier can tunnel through that state into the right side of the barrier. 
From Figure ( lb ) , an increase in gate bias lowers the double-barrier and thus the sublevel 
Eqbn. Because of the difference of the density of states on both sides of the barrier, the 
tunneling current increases as the sublevel passes below Ef until it peaks when it reaches 
Ef. For larger gate-biases, the current decreases until the quasi-bound level passes below 
E2D1 when the current goes to zero. 

The device of Figure ( la) was simulated for Lx = 600, 750 and 900 A . The lowest ten 
wave-functions of the periodic structure were calculated, which included the two quasi-bound 
states. Imaginary-time propagation was used in the equilibrium case with a time step of 2.0 
fsec. Under the application of Vbs, the equilibrium wave-functions are used as the initial 
wave-functions which are then propagated in real-time with a time step of 0.5 fsec. 

The calculated resonance currents are plotted in Figures (2b-2d) for Lx=600 A, LX=75Q Aand 
J&J,.=900 A, respectively. For gate-biases greater than the ranges shown in Figures (2b-2d), 
the double-barrier dipped below the quasi-Fermi level which invalidates our approximations 
for the charge distributions and the tunneling currents. The gate biases corresponding to 
the peak values of the current suggests that simulation would best match experiment for a 
Lx value between 750 and 900 A. This corresponds nicely to the actual device photograph, 
which shows Lx to be approximately 850 A[3]. In addition, the current peaks are separated 
by 0.028F for the 750 A curve, which compares favorably to the experimental separation of 
0.027F in Figure (2c). 

In conclusion, we have modeled the quantum-mechanical current in the double-barrier 
field-effect transistor with a self-consistent Poisson and Schrodinger equation solver. The 
simulation shows the characteristic resonance peaks in the drain-source current versus gate-
source voltage curves due to tunneling through the quasi-bound states of the double-barrier. 
The calculated results compare favorably with the experimental results, especially with the 
current peak separation and the resonance current through the first quasi-bound state. 
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