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Abst rac t 

We have numerically calculated the magnetic field dependence of electron transmission prob
abilities through a non-adiabatic constriction containing an elastic scatterer. The transmission 
probabilities are found directly from the scattering matrix of the constriction and the elements 
of this matrix are evaluated by the real space mode matching technique. This technique requires 
knowledge of the wavefunctions of the various modes or subbands (both propagating and evanes
cent) in the constriction and these are found by solving the Schrodinger equation using a finite 
difference scheme. From the transmission probabilities, we compute the 2-probe linear response 
conductance as a function of a magnetic field. We observe pronounced negative magnetoresistance 
which agrees with past experimental observations. 

Electron transmission through narrow ballistic constrictions subjected to an external magnetic field has 
been a topic of extensive experimental and theoretical study for the last few years [1,2]. The theoretical 
studies [2] have concentrated on computing the transmission from a Green's function using the Fisher-
Lee formula [3]. The effect of the magnetic field is incorporated in the Green's function through a 
Peieri's phase factor. However, Peieri's substitution has recently been criticized [4] on the ground that 
this can lead to both quantitative and qualitative errors in the calculation of energy levels of quasi two 
dimensional electron gases. Therefore, the Green's function technique, which is used presumably for its 
relative simplicity and computational ease, is not a reliable technique, especially when the magnetic field 
is quite strong. 

In this paper, we have calculated electron tranmission through a narrow constriction containing an 
elastic scatterer using a completely different technique. The transmission is calculated directly from a 
scattering matrix describing electron propagation uirough the disordered constriction in die presence of 
a magnetic field. This scattering matrix can be computed exactly for a ^-scatterer. Reference 5 describes 
how diis matrix is calculated in die absence of a magnetic field and reference 6 has extended it to the 
case when a magnetic field is present. Owing to space limitations, we will present only the basic features 
of this method here; for further details, the reader is referred to Rcfs. 5 and 6. 

The scattering matrix of a disordered constriction subjected to a magnetic field is found by first 
breaking up the structure into a number of sections - one containing the junction between the wide and 
narrow regions (plane y — y' in Fig. 1) and the odiers containing the scatterers. A scattering 
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Figure 1: A constriction containing an elastic scatterer and subjected to a magnetic field in the 
z-direction. 

matrix for each such section is then found by relating the amplitudes of the reflected modes (channels) to 
those of the modes incident on that section. Both propagating and evanescent modes must be considered. 
This requires matching wavefunctions of the modes (i.e. wavefunctions of the various subbands) and their 
first derivatives across the section. We accomplish this by the real space mode matching technique [7] as 
opposed to the k-space mode matching technique [8] which is numerically not suitable for acheiving quick 
convergence when the modes are not orthogonal (they are not orthogonal in the presence of a magnetic 
field). The wavefunctions of the modes in any section are calculated numerically using a finite difference 
scheme for solving the Schrodinger equation in a magnetic field [91. Finally, the overall scattering matrix 
is found by cascading the individual scattering matrices according to the Redheffer rule f 10] and from 
this overall matrix, the transmission through the entire structure is obtained direcdy. 

In Figs. 2-4 we plot results for a constriction whose wide region has a width of 1000 X and the 
narrow region has a width of 500 X. The ^-scatterer is placed right at middle of the junction as shown 
in Fig. I; it represents an attractive impurity. The material is assumed to be GaAs and the Fermi 
wavevector is lQ6/cm. Two subbands are occupied in the wide region and only one in die narrow region. 
We calculate the transmission amplitudes of electrons incident from both occupied subbands (modes) 
in the wide region into the only occupied subband (propagating mode) in die narrow region as well as 
into the two lowest unoccupied subbands (evanescent modes) in die latter region. These amplitudes are 
computed as a function of the magnetic flux density and the results are shown in Figs. 2 and 3. Note 
tiiat die magnetic field dependences of me transmission amplitudes are non-monotonic. 

Finally, we also calculate the two-probe linear response magconductance G(B) as a function of the 
magnetic flux density B from die Landauer-Biittiker formula. The magnetoconductance result is shown 
in Fig. 4. It is interesting to note mat even diough die magnetic field dependences of die transmission 
amplitudes are strongly non-monotonic, die conductance is almost a monotonic function of die magnetic 
field. The constriction exhibits pronounced negative magnetoresistance which agrees widi experimental 
observations reported by a number of researchers in die past [11]. 
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Figure 2: Magnetic field dependence of the transmission amplitude tn describing propagation 
from the lowest subband in the wide region to subband i in the narrow region. The solid curves 
correspond to the case when subband i is occupied (propagating mode) and the broken curves are 
for the case when subband i is unoccupied (evanescent modes). 
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Figure 3: Magnetic field dependence of the transmission amplitude *,2 describing propagation from 
the second lowest subband in the wide region to subband i in the narrow region. The solid curves 
correspond to the case when subband 1 is occupied (propagating mode) and the broken curves are 
for the case when subband /' is unoccupied (evanescent modes). 
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Figure 4: Two-probe linear response conductance of the constriction in Fig. 1 as a function of 
magnetic flux density. 
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