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ABSTRACT 

Landauer's residual resistivity dipole picture is studied in a system with multiple coherent 
scatterings. The particle density distribution within a mesoscopic conductor under nonequilibrium 
conditions is calculated and shown to have both short and long-range fluctuations which, in a 
charged system, significantly modify the internal electrical field. 

There are two key ingredients in Landauer's theory of quantum transport [l], of which the first, 
that transport should be viewed as a wave transmission process, has been generally accepted and 
become a cornerstone of mesoscopic physics. The second part of the Landauer theory recognizes 
the inhomogeneity of the internal electrical field in a disordered, current-carrying conductor. Lan­
dauer's original argument goes as follows. Consider a conductor carrying a constant (and fixed) 
current. If we move one of the scatterers by a small distance, the conductance and therefore the 
voltage will change. Contrary to what one might expect from the usual picture of a linearly slant 
potential (but consistent with one's intuition), the corresponding change in voltage is generally 
not spread out uniformly across the entire sample, but rather is localized in the neighborhood 
of the scatterer. The internal electrical field in a current-carrying conductor is therefore highly 
nonuniform even in a nominally homogeneous conductor and depends sensitively on the scattering 
configuration. Such an inhomogeneity is important in electromigration [2], nonlinear transport 
[3,4,5] and ac transport [3], among other things. 

The internal field and its effect on carrier dynamics in semiconducting devices are, of course, the 
bread and butter of solid state electronics. Much less is known about the quantum inhomogeneity in 
conductors. We have completed a numerical and analytical study of this Landauer inhomogeneity, 
focusing in particular on the mesoscopic aspects of the problem. This paper summarizes our major 
conclusions, outlines the numerical approach used, and presents the numerical results. 

The quantity of interest here is the electron density; the electrostatic potential can be related 
to the density using, e.g., Thomas-Formi approximation. We consider a mesoscopic conductor 
connected to two reservoirs with well-defined chemical potentials /i\ and /i2, with 6fi = [i\ — ft2 > 0. 
The existence of such reservoirs is a key assumption in the modern treatment of quantum transport 
in mesoscopic systems. If A/t = 0, the current is zero, the particle density can in principle be 
calculated (using, e.g., density functional theory) and is generally nonuniform. Consider now the 
change in particle density when a nonzero Afi is applied on the system: 

Sn(x)= r ' r f t f ^ l ^ a O I ^ E - E , , ) , (1) 
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where tya(x) is the scattering wave function incident from the left (fi\) side and is given by the 
Lipprnann-Schwinger equation, 

Va = $a + G+(Ea)V$a. (2) 

Here G+(Ea) = [Ea — H + i0+]_ 1 is the Green's function, V is the scattering potential, and $ 
characterizes the incoming state. Therefore Sn is given by 

6n{x) = / — < x\AG(E)\x >, (3) 
Jfi2 2,-Kl 

where AG = G~ — G+. For a particular realization of the impurity configuration, Eq. (3) has to 
be calculated numerically. We use the recursive Green's functions method proposed by Lee and 
Fisher [6] to evaluate (3) for a 2D tight-binding model, 

H = VXJ2 4+hkHk + H.c. + VyJ2 <^Mia3,k + H.c. + ] T Ejtkafkajik, (4) 
j,k j,k j,k 

where j and k label the sites in the x and y directions and Ejtk is a random site energy. If one 
denotes the Green's function for the last column of a system in which all sites j > j 0 are removed 
by GL(j0) = G%k,(j0,j0) (and similarly for the first column Green's function GR(j0) for a system in 
which all sites j < j 0 are deleted), the Green's function for a particular column G(j) = Gk,k'(j,j) 
can be calculated as an Nt X Nt dimensional matrix 

G(j)-1 = G\j)~' ~ Vx
2GR(j + 1) - V?GL(j - 1), (5) 

where Nt is the number of lateral sites of the sample and G°(j0) is the Green's function for the 
isolated j'th column. GL(jo) satisfies the recursion relation 

GL(jo)-1 = G°(j0)-
1 - V?GL(j0 - 1); (6) 

similarly GR(jo) satisfies 
GR(joy

l = G0^)-1 - Vx
2Gn(j0 + 1). (7) 

We first compute the Green's function for the semi-infinite perfect lattice (representing the left 
lead). Using this as the seed, all the left Green's functions can be computed recursively using 
Eq. (6). Similarly we generate the right Green's functions GR. The true Green's function is then 
obtained from Eq. (5). We use hard wall boundary conditions in the direction perpendicular to 
the overall current. This formalism can be easily generalized to three dimensional systems or to 
systems with multiple leads. 

Fig. 1 shows a typical example of the potential fluctuation in a 50 X 50 system (a) along a line 
x = const (penpendicular to the current) and as a function of the bias, and (b) along a line y = const 
and as a function of the bias. Notice that (1) the potential exhibits rapid spatial variations, due 
to the short mean free path (on the order of a few lattice constants) and the overlapping Friedel 
oscillations (see below), (2) the equipotential lines are not necessarily normal to the direction of 
the overall current, and (3) at a given point in the sample, the local voltage does not necessarily 
increase monotonically with the external voltage. 
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Figure 1: The potential fluctuation dn in a 50 x 50 system as a function of the external voltage V 
(in unit of 1/40 the bandwidth) and the position, (a) along a line (x = 25) perpendicular to the 
direction of the average current, and (b) along a line (y = 20) parallel to the current. 
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To gain further insight into the field fluctuations, we calculate diagrammatically the irreducible 
density-density correlation function in a current carrying system, 

F(x,y;fii,fi2) = < 6n(x)8n(y) > - < 8n(x) >< 6n(y) > 

= - fl ^P-l< x|AC(f?,)|x X y\AG(E2)\y >]av, (8) 

Within the Thomas-Fermi approximation, the local potential fluctuation is given by 

< (6$)2 > - < 8<f> > 2 = ——^F(x,x;fiufi2) 

3 / l . „ A - 2 l / 2 
_ f f ( * F £ ) - 2 F 2 , CV«1/T; ( ) 

~ U O f c F / J - ^ e r J - ' V , eV>l/r. K) 

Here N is the density of states at the Fermi level, UF the Fermi wavevector, I the elastic mean free 
pa th , r the mean free time, and V the voltage applied on the system. The spatial correlation of the 
potential fluctuations can be similarly calculated. Details of these calculations will be presented 
elsewhere. 

We find that the potential fluctuations consist of two parts . First, there is the Landauer "residual 
resistivity dipole" [1] term which is modulated by a certain kind of Friedel oscillation [7]; this term 
has a short correlation length on the order of the elastic mean free pa th . The second component is a 
multiple scattering contribution; its correlation decays only algebraically over long distance scales. 
In the small voltage limit, the local rms fluctuations is down from the voltage by a factor of order 
(kfi)-1. This is expected from Landauer's original derivation which shows that the fluctuation 
is proportional to the scattering cross section of the scatterer. It is also interesting to observe 
that while (6<f>)2 grows like (A/ i ) 2 for small Aft, for large Afi it is proportional to Afi: the local 
potential undergoes a random walk as the overall voltage is increased. Taking into consideration 
the spatial correlation discussed above, this reveals an extremely complicated potential landscape 
in a current-carrying, nominally uniform conductor. 

Part of this work was done while both authors were visiting the Massachusetts Insti tute of 
Technology thanks to the hospitality of Professor P. A. Lee. This work was supported in part by 
the ONR under N00014-89-J-3093 and by the National Center for Computational Electronics. 

1. R. Landauer, IBM J. Res. Dev. 1, 223 (1957); Z. Phys. I) 2 1 , 247 (1975); IBM J. Res. Dev. 
32 , 306 (1988). 

2. R. S. Sorbello and C. S. Chu, IBM J. Res. Dev. 32 , 58 (1988), and references therein. 

3. R. Landauer, Z. Phys. B 6 8 , 217 (1987). 

4. H.-S. Tang and Y. Fu, Phys. Rev. Lett. 67 , 485 (1991). 

5. P. N. G. dc Vegvar, AT&T Bell Laboratories preprint (1992). 

6. P. A. Lee and D. S. Fisher, Phys. Rev. Lett. 47 , 882 (1981); A. D. Stone, Phys. Rev. Lett. 
54 , 2692 (1985). 

7. W. Zwerger, L. Bonig, and K. Schonhammer, Phys. Rev. B 4 1 , 6434 (1991). 




