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Abstract 

The numerical discretization aspects of the quantum transport simulation of finite open systems are clarified in the 
framework of the discrete phase-space and lattice Weyl-Wigner formulation (LWWF) of quantum dynamics. For 
accurate numerical simulation of resonant tunneling devices at zero bias, the symmetry of closure and/or 
zero-current symmetry has to be imposed to avoid obtaining absurd results, particularly for asymmetric 
double-barrier structures at zero bias, where previous treatments were inadequate. 

1. INTRODUCTION 

The lattice Weyl-Wigner formulation of quantum dynamics of Bloch [ 1,2] electrons has recently been 
shown as a powerful and convenient analytical tool for deriving the exact many-body quantum transport 
equation in discrete phase-space [3,4], which is expected to guide future numerical and analytical work 
on nanoelectronics and quantum-based devices. 

The purpose of this paper is to show how LWWF of quantum dynamics of electrons in solids serves 
to guide the proper numerical implementation of the Wigner distribution-function (WDF) transport 
equation. Since the WDF transport equation is only an approximation to die exact many-body quantum 
distribution-function transport equation in solids, the "discretization" of die WDF transport equation must 
be a direct consequence of the LWWF of quantum transport. 

2. DISCRETE PHASE-SPACE MANY-BODY QUANTUM TRANSPORT EQUATION 

The equation for the quantum distribution-function, -iG<(p,q,E,f), is given by [4] 
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in the (3 + l)-dimensional notation for the variables: p = (p,£), q - (q,0- The WDF is defined by the 
following relation 

fw(P,q>t) = ^ } dE (-i)G<(p,E,q,t). (2) 

The integral kernels are given in terms of the lattice Weyl transforms (LWTs) [3] and have very simple 
forms, symbolically indicated as follows 
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The exact discretization of the momentum variables will be discussed below. 
It is this inherent discrete phase-space nature of the quantum transport equation that must be retained 

in the numerical calculations. Thus, in the spirit of the WDF approximation we write Eq. (1) as the first 
term plus the many-body corrections, namely, 
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x {H(p + u,q - v) - Hip - u,q + v)}G (p',q') + Many-Body terms 

In the last equation, H(p,q) is the lattice Weyl transform (LWT) of the effective single-particle 
Hamiltonian. In the effective-mass approximation, we have 

H(p,q) = J— * V(q), (5) 
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which, when substituted within the curly bracket of Eq. (4), leads to the following equation for the WDF 
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x {V(q - v) - V(q + v)} fjp',q,t) + Scattering Terms. 

3. DISCRETIZATION OF THE MOMENTUM VARIABLE 

In numerically implementing Eq. (6), extreme caution has to be exercised in the discretization of the 
momentum variables. The reason for this is that in the LWWF, p and q are the variables obtained 
through the transformation, 

(7) P = P ~ u, q + v, p - u, q + v, 

where the primed momentum variables have the usual discretization (in 1-D given by 2ir/Na, where a 
is the lattice constant and N is the total number of lattice points). However, the above transformation have 
a Jacobian differing from unity. In one-dimensional systems one expects the ratio of the discretization 
lengths between the old and the new variables to be determined by the Jacobian factor of 4 in 

dp'dp'Jdq'dq" = 4 dpxduxdqxdvx. (8) 

Therefore, if one insists on the physically meaningful discretization of the real space to be given by the 
crystal lattice, it follows that the discretization of the momentum variables in Eq. (6) is ir/Na. This can 
also be seen from the definition of the LWT for a periodic Hamiltonian, 

H(p,q) = Y, exP I" <q - v|!K|£ + v> = Y exP i 
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For the above relation to be invertible, one of the important assumptions in the steps leading to Eq. (6), 
then it is necessary that 8k = irlNa. Note that in a truly discrete case, the LWT of the single-particle 
Hamiltonian, //(p,q), is not equal to the energy eigenvalue or the energy band. Strictly speaking, it is 
only in the continuum limit that one can consider H(p,q) to be identical to the energy band of a periodic 
system. 

The following discretization scheme for the momentum variables, which avoids zero momentum and 
discriminates positive and negative directions (for ease in applying boundary condition), holds for Eq.(6), 

k, = (21 - N - 1) IT 
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The zero-momentum value is excluded to eliminate pathological cases and very slow convergence of the 
numerical transient simulation, thus it is desirable to have an even number for the total number of lattice 
points N. 

4. SYMMETRIZATION IN THE PLACEMENT OF THE ORIGIN 

For even number of lattice points, a center of inversion symmetry that lie in one of the lattice points 
can not be identified. Therefore, in order for the potential term in Eq. (6) to be real, a symmetrization 
in the placement of the origin at the lattice point has to be performed. A symmetrization of the placement 
of the origin, at Nil and (N/2) + 1, yields a purely imaginary quantity. The result is 
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Therefore, a proper numerical implementation of the WDF transport equation involves taking the fast 
Fourier transform (FFT) of two distinct sequences of V(n + n') for each value of n, for a given resonant 
tunneling device (RTD) potential profile. 

5. CLOSED AND FINITE OPEN SYSTEM BOUNDARY CONDITIONS 

It is the proper treatment of the sequence V(n + n') with respect to the boundary which determines 
whether one is dealing with an open finite system in contact with a heat bath and exchanging particles 
with the environment, or whether one has a closed infinite periodic system interacting with a heat bath. 
In the former case, V(n + n') clearly has to be extended beyond the N lattice points of the device under 
consideration, i.e., include lattice points of the highly conducting particle reservoirs. In the later case, 
V(n + n') obeys the Born-von Karman periodic boundary condition, thus simulating an infinite 
quantum-well superlattice at zero bias. 

At zero bias, it is very important to incorporate the existing symmetry of equilibrium (zero-current 
state) for both the open and closed system, otherwise one could get absurd nonzero-current results caused 
by numerical inaccuracies. The present work is partly motivated by the absurd results at zero bias, 
particularly for asymmetric RTD, obtained by the method of both Jensen and Buot [5] and that of 
Frensley [6], which have proven to give extremely good results for the current at nonzero biases. By 
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incorporating the existing symmetry at zero bias in the present work, the current is numerically equal to 
zero for both symmetric and asymmetric RTD. 

The WDF transport simulation at zero bias is expected to show the difference in the energy-level 
structure of the quantum well for the finite open system, consisting of a single RTD structure, compared 
to that of an infinite periodic system of quantum-well superlattice (real energy bands in the quantum well 
and virtual energy bands in the highly conducting intervening leads). 

Using the numerical technique described in this paper, we have simulated both systems, consisting 
of asymmetric double-barrier structure, at zero bias for T = 77 K, results are shown in Figs. 1-2. The 
Fermi level was calculated using the neutrality of electrons, holes and ionized donors for a doping level 
of 2 x 1018/cm3 at 77 K. Indeed, the quantum-well superlattice shows electron occupation of the energy 
bands in the quantum well, whereas the sharper ground-state energy level of a single quantum well do 
not contain any visible electrons. This results serve to validate the high-accuracy of the present numerical 
technique for simulating the WDF transport equation. The simulation of the intrinsic bistability of an 
asymmetric RTD will be given in a separate paper. 

Fig. 1 — WDF at nero bias for an asymmetric 
barrier-well-barrier structure of 40A-51A-62A, obtained by 
applying the periodic boundary condition, simulating an 
infinite quantum-well superlattice. 
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Fig. 2 — WDF of the same structure used in Fig. 1, using 
the finite open system boundary condition, simulating a 
single quantum well. 




