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A b s t r a c t 
We present the Bloch-Poisson model describing quan tum steady states of electrons in 

thermal equilibrium. A comparison to the Schroedinger-Poisson model and a discussion of 
the used statistic (Boltzmann or Fermi-Dirac) correlated to the choice of the effective local 
potential is given. The use of the Bloch-equation for the Fermi-Dirac case is sketched. A 
short introduction to analytical and numerical features of the Bloch-Poisson system and 
its classical limit is given. 
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1. In troduct ion . Our goal is the calculation of quantum steady states of an electron 
ensemble in thermal equilibrium. We consider a one-electron approximation with a self-
consistent potential describing the Coulomb interaction of the electrons with each other 
and with a background of (positive) ions. 

The most evident way of setting up this model is to consider the eigenvalue problem for 
the Schrodinger equation directly coupled to the Poisson equation (e.g. [1], [2]). The elec
tron density then is defined as a sum over the squares of the modulus of the eigenfunctions 
weighted by occupation probabilities. 

Under the assumption of Boltzmann statistics, the computationally expensive eigenvalue 
problem can be avoided using the Bloch equation for the density matrix ([3], [4], [5], [6]). 
The Bloch equation is a parabolic equation in which the role of the time is played by 
the reciprocal of the temperature. The spatial operator is the negative Hamiltonian and 
the initial da tum is a delta-distribution. The charge density is obtained by evaluating 
the density matrix at the normalized diagonal. The appropriate coupling to the Poisson 
equation leads to a non-s tandard evolution problem ([6]). 

The thermal equilibrium density matrix or its Fourier transform, the Wigner function, 
can be used as an initial condition for modelling time dependent problems. Recently 
relevant numerical results for the resonant tunneling diode have been obtained using a 
relaxation t ime ansatz for the collision term in the Quantum Liouville equation ([7]). 

2. T h e Schrodinger -Po i s son m o d e l . In this approach the s tate of the system is de
scribed by one-particle wave functions in an £ 2 - space (e.g. [1], [2]). We have to calculate 
the eigenfunctions of the stationary Schrodinger equation 

(2.1) HxPi(r) = EnJ>i(r), | |& | | L S = 1, i € N 0 , 

The Hamiltonian reads 

(2-2) H = -£;A + Vcn(r). 



with some local effective potential VKf[(r) taking into account the Coulomb interaction 
of the (large number of) electrons. We omit additional terms like an applied external 
potential, heterojunction discontinuities, etc. 

The (electron) density is given by 

(2-3) n(r,/?) = E i 6 N 0 /(£,-, W t - ( r ) ^ ( r ) 

where f(Ei,/3) is the probability of finding an electron in the state ipi. Thermodynamics 
enter via the reciprocal temperature f3 = 1/fcT, where k is the Boltzmann constant and T 
the temperature. 

In order to achieve self-consistency we calculate Vefj(r) as a function of n(r). The most 
common way is by simply solving the Poisson equation (q is the (positive) unit charge): 

(2.4) Fefr(r, 0) = Vcouiomb(r) = - & / j^n^dr'. 

3. Effective potent ia l vs. occupat ion probabil i t ies . 
It is well known that electrons obey Fermi-Dirac (F — D) statistics: 

(3-1) fpD(Ei,P) = e<>(^lf)+1 

and that Boltzmann statistics are the high temperature approximation of F — D statistics: 

(3.2) fB(Ei,/3) = Ze-f}E<. 

The "Fermi energy" F and the "partition function" Z are /^-dependent normalization 
constants. 

The choice of the statistics used in (2.3) cannot be regarded independently of the choice 
of the effective potential Vea(r). For consistency with the underlying antisymmetrized 
(Hartree-Fock) ansatz in the reduction of the many body problem, the use of F — D 
statistics should be combined with the inclusion of an exchange-correlation term Vxc(r)-

This potential has the opposite sign of Vc0ulomb(»~) a n < i ^ takes into account the Pauli 
principle and the Coulomb repulsion of the electrons ("exchange-correlation hole"). 

A frequently used expression is given by the so-called Xa exchange term: 

(3.3) VXc(r) = ae2 (1\ ' (n(r))h, a g [f, l] . 

It is a very good choice as long as no spin dependence is introduced. (For a discussion and 
more references, see [8], [9].) 

On the other hand, the sole use of FCouio.nb(r) linked with the use of Boltzmann statistics 
is consistent with a Hartree-ansatz for the many body wave function. 

4. The Bloch-Poisson model . Using Boltzmann statistics we can describe the system 
by the unnormalized density matrix [3]: 

(4-1) P(r,s,0) = E t e - ^ ^ ( r ) ^ ( 5 ) . 

Differentiation with respect to /? gives the Bloch equation [3], [4], [5], [6]: 

(4-2) pp(r,s,0) = -Hrp(r,sJ); 0 G (0,0*] 

(4.3) p(r,s^ = 0) = 6(r-s) 



with the Hamiltonian (2.2) acting on the r-variable only. 0* denotes the (fixed) tempera
ture of the device. The electron density now reads 

(4.4) n(r) = , pf r ' r ' r ) , 0* fixed. 

According to our discussion in Section 3 we take the direct Coulomb term only as Vef[(r): 

(4.5) AV e i r(r) = f-(n(r) - C(r)) 

where es is the permittivity and C(r) is the doping profile of the considered semiconductor. 
We remark that p(0), described by the system (4.1)-(4.5) represents the density matrix 

in thermal equilibrium only for 0 = 0*, and p(0) is just an auxiliary quantity for 0^0*. 
This situation contrasts the linear Bloch equation [3], [5], where p(0) represents the correct 
density matr ix for any temperature. Note that a direct coupling of the Bloch and the 
Poisson equation for all 0 is not correct, since the Hamiltonian would then be /^-dependent 
via the potential, and additional terms in (4.2) occur. 

5 . B o u n d a r y c o n d i t i o n s (BC) a n d m a t h e m a t i c a l a n a l y s i s . 
The Bloch-Poisson model has been analyzed with homogeneous Dirichlet BC and peri

odic BC on a bounded domain as well as for the whole space case [6], [10], [11]. 
Of course, other, more realistic boundary conditions are desirable (e.g. [12]), but one 

should be aware that due to the Fourier transformation in the Wigner-Weyl transforma
tion, the equivalence of the Schrodinger and the Wigner picture gets lost. 

In [5], [6], [10], [11] existence of a solution of the Bloch Poisson system has been proven 
using semigroup theory in Sobolev spaces with a negative index. Due to the specific 
coupling at 0 = 0* uniqueness cannot be achieved by contraction arguments, but ([2]) using 
a monotonocity property of the charge density n according to the equilibrium potential V 
and a per turbat ion AV. 

(5.1) J(n[V + AV](r) - n[V}(r))AV(r)dr > 0. 

It reflects the tendency of the electrons to occupy states of low (potential) energy ([13]). 

6. N u m e r i c a l i d e a s a n d c lass ica l l i m i t . In [6], [11] an iteration over the potential V 
was used: For given Vn the Bloch equation (4.2), (4.3) is solved for 0 G (0,0*], the density 
(4.4) is evaluated for fixed 0 = 0* and the Poisson equation (4.5) yields a new potential 
Vn+i. Since this mapping Vn+\ = F(Vn) is in general no contraction this iteration should 
be replaced by an underrelaxed fixed point iteration: 

(6.1) F n + 1 = (1 - u)Vn + uF(Vn% 0 < w < 1. 

In [6] convergence of this algorithm (for cu sufficiently small) was proved based on the 
monotonocity property (5.1). As a first iterate for (6.1) we can use the potential V° of the 
according classical problem obtained by the limit h —* 0 ([6], [11]) 

(6.3) AV° = exP(^y»(«)) _ c , y 

Note that the classical limit cannot be performed directly for the density matrix but for 
Wigner transformed quantities. 
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7. General ized Bloch equat ion (F — D s ta t is t ics) . 
For Fermi-Dirac statistics (cp. [5]) the Bloch equation (4.2), (4.3) has to be replaced 

by: 

(7.1) P(r,s,0*)= (l + e ' n " ' - F > ) ~ 1 * ( r - 3 ) 

with the effective Hamilton operator (Hr acting on the r-variable) according to Section 3: 

(7.2) H = - £ • Ar + Vbouiomb(r) + Vxc(r). 

The Fermi-energy results from the normalization 

(7.3) Jp(r,r,l3*)dr = l^F. 

Hence the charge density is given by 

(7.4) n(r) = p ( r , r , r ) -

The following fixed point iteration pk(r,s) —> pk+i(r,s) allows for Bloch-type parabolic 
equations again [14] and requires no determination of the Fermi-energy F: 

(7.5) nk(r) = pt(r,r) 
(7.6) A(FCoulomb(r))* = f;(nk(r) - C(r)). 

(7.7) h+i{r,s) = e-^H^+«.)(<5(r - s) - p«(r,s)). 

(7-8) Pt+i(rts)= r?+1}r'a\, • 
J Pk+i(y,y)dy 

Note that (7.7) has the form of the Bloch equation with a different initial condition. Again 
we have to use an underrelaxation iteration like (6.1) to assure convergence. 
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