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Abstract 

It is well known that transmission resonances exist in double-barrier resonant tunneling structures. 
In this paper, we study transmission in quantum waveguide systems with attached resonators. 
We find that these quantum wire systems exhibit a rich structure in the transmission amplitude. 
In addition to transmission resonances, these systems also possess transmission zeros. In order 
to elucidate these differences, we present a numerical study of the transmission amplitude in the 
complex-energy plane for both double-barrier resonant tunneling and resonant quantum wire struc
tures. 

Introduction 

Transmission in quantum waveguide systems has been studied because of their potential appli
cation in nano-scale devices. Sols and co-workers [1] investigated transmission in quantum channels 
with attached t-stub resonators. They found that resonant states in the t-stubs led to a strong 
variation in the transmission coefficient, and they proposed to exploit this behavior as a switching 
mechanism in devices. Lent [2] studied transmission in the so-called "quantum whistle" which is 
a channel with an attached circular resonator. He also found rich structure in the transmission 
coefficient as a function of energy, which apparently is related to quasi-bound states in the resonant 
cavity. Similar features were also seen in the loop structures [3, 4]. In a recent study, Price [5] shed 
light on the relationship between the transmission coefficient and quasi-bound states for quantum 
waveguides with attached resonators. Using a scattering matrix approach, he demonstrated that 
resonant states may lead to both maxima or minima in the transmission coefficient. This rich be
havior is in marked contrast to transmission in the much-studied double barrier resonant tunneling 
structures, where only Hreit-Wigner-type resonances are observed. 

Here, we present a numerical study of the transmission amplitude in the complex-energy plane 
for both double-barrier resonant tunneling and quantum wire structures. For both systems, we find 
that the transmission amplitude has polos in the complex-energy plane [6]. In addition, quantum 
wire systems (but not double-barrier resonant tunneling structures) possess zeros of the transmission 
amplitude on the real-energy axis. A pole and a zero in close proximity lead to the sharp variation 
of the transmission coefficient as a function of energy, which was noted in the previous studies. In 
the following, we elucidate this behavior by presenting several examples. 

Approach 

We solve the time-independent Schiodinger equation to obtain the transmission amplitude in 
the complex-energy plane for double-barrier resonant tunneling and quantum wire systems. The 
finite element method is used to discretize the problem domain, and the quantum transmitting 
boundary method is employed for the current-carrying boundary conditions [7]. The waveguide 
structures are assumed to consist of thin wires such that only one transverse mode has to be 
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considered. At each branch point in the network, we use matching conditions for the wavefunctions 
and their derivatives. The resulting system of linear equations is solved utilizing standard routines. 

Resul ts 

Double-barrier resonant tunneling has been studied extensively [8-10]. It is well known that the 
transmission amplitude possesses poles in the complex-energy plane, which correspond to the quasi-
bound states in the quantum well region. The real part of the pole locations gives the energy of 
each resonant state, and the imaginary part determines their lifetime. Figure 1 presents an example 
of the transmission amplitude in the complex-energy plane for the double-barrier structure shown 
in the inset (L=30 nm, b=5 nm, Vo=0.2 eV, and Vw=0.1 eV). The top panel displays the absolute 
value of the transmission amplitude on the real-energy axis. The bottom panel shows a contour 
plot of the absolute value of the transmission amplitude in the complex-energy plane. The poles in 
the lower half (negative imaginary part) of the complex plane are clearly visible. Furthermore, it 
is evident from this figure that the poles result in transmission resonances on the real-energy axis. 
Each resonance is centered (Lorentzian shape) around the energy of a quasi-bound state (real-part 
of a pole). 
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1: Transmission amplitude in the complex-
plane for double-barrier resonant tunneling. 
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Figure 2: Transmission amplitude in the complex-
energy plane for a strongly-coupled t-stub resonator. 

Figure 2 displays the transmission amplitude in the complex-energy plane for a strongly-
coupled stub. The inset shows the wire structure which consists of a transmission channel and an 
attached resonator of length L=1G nm. Again, the top panel displays the transmission coefficient 
on the real-energy axis, and the bottom panel shows the contour plot in the complex-energy plane. 
Note the existence of transmission zeros on the real-energy axis. In contrast to double-barrier 
resonant tunneling, the transmission maxima, do not occur at the same energies as the poles. 
Rather, they occur at some intermediate energy between two zeros which is determined by the 
proximity of the poles to the real-energy axis. 
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3: Transmission amplitude in the complex-
plane for a weakly-coupled t-stub resonator. 
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Figure 4: Transmission amplitude in the complex-
energy plane for a weakly-coupled t-stub resonator. 

A potential barrier may also be used to weakly couple the resonator to the transmission channel. 
Figures 3 and 4 show the transmission amplitude in the complex-energy plane for two such weakly-
coupled t-stubs with barrier heights of 0.2 eV and 0.5 eV, respectively. The insets in these figures 
schematically show such potential barriers (thickness d= l nm) which are placed in the side-arm 
close to the branch point. The main effect of the barriers is to increase the lifetimes of the quasi-
bound resonant states in the stub. As can be seen, the longer-lived states for the larger barrier 
height possess poles which move closer to the real-energy axis. The closer proximity of zeros and 
poles in Fig. 4 (compared to Fig. 3) leads to a sharper variation of the transmission coefficient on 
the real-energy axis. In the limit of an infinitely high barrier, the poles and zeros lie on top of each 
other and the transmission coefficient becomes unity and independent of energy, corresponding to 
perfect transmission in a completely decoupled transmission channel. 

The electronic states in the resonator are standing waves, where the wavenumber k is related to 
the energy E by the usual free-electron-like dispersion relation, E = h2k2/2m". Transmission zeros 
and ones occur whenever the wavefunction in the resonator matches a zero or one in the transmission 
channel, respectively. For the strongly-coupled stub, the zeros and poles are separated by a quarter-
wavelength which has to fit into the side arm. For the weakly-coupled stubs, the exponential decay 
of the wavefunction in the barrier region forces the zeros and ones closer in energy. For each 
additional quasi-bound state, the matching conditions for an additional transmission zero and one 
are satisfied. Each resonant state, thus, results in a zero-pole pair in the complex-energy plane. 

We also investigated transmission in loop structures. Figures 5 and 6 show the transmission 
amplitude in the complex-energy plane for a symmetrical (Li = L2=10.5 nm) and an asymmetrical 
(L! = 10.5nm and L2=12 nm) loop. The symmetrical loop is particularly interesting since it contains 
true bound states. The associated zero-pole pairs lie right on top of each other which cancels the 
zero in the transmission coefficient. Any slight asymmetry in the side arms of the loop will separate 
the zero-pole pairs, as can be seen in Fig. 6, thus resulting in very sharp features in the transmission 
coefficient on the real-energy axis. 
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5: Transmission amplitude in the complex-
plane for a symmetric loop. 
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Figure 6: Transmission amplitude in the complex-
energy plane for an asymmetric loop. 

S u m m a r y 

We demonstrated that the transmission amplitude for quantum waveguide systems possesses a 
richer structure than for the much-studied case of double-barrier resonant tunneling. The interfer
ence of the standing wave in the resonator with the wave in the waveguide results in transmission 
ones and zeros. These are a consequence of a zero-pole pair which each quasi-bound state produces 
in the complex-energy plane. In contrast, the transmission amplitude for double-barrier resonant 
tunneling solely possesses poles which lead to the well-known Breit-Wigner resonances. 
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