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Abstract 

Ballistic effects play a central role in understanding transport in submicron devices. We present a 
new moment method for ballistic transport in a one-dimensional semiconductor device structure. 
In the ballistic regime, our moment method is computationally efficient compared with spectral 
and Monte Carlo methods. Here, we have extended this moment method from field-assisted t.o 
field-retarded flow. Results for the spatial, field, and (weak) collisional dependencies of low-order 
moment variables are presented. 

Summary 

In a previous report,[1] a new moment method was developed and applied t.o the study of field-
assisted ballistic transport in a one-dimensional semiconductor device structure. This moment 
method is based on the characteristic solution of the collisionless Boltzmann equation. Wo have 
found the method to be computationally efficient, for a given level of accuracy, compared with 
conventional Boltzmann solution methods (spectral, direct iterative, or Monte Carlo). 

Here, we extend our method to the field-retarded case. The distribution function is parame
terized in a form corresponding to the exact collisionless characteristic solution for field-retarded 
flow. Upon substituting the parameterized distribution into Boltzmann's equation and evalual 
ing velocity moments, a set. of nonlinear ordinary differential equations governing the distribution 
parameters follows. Macroscopic quantities such as carrier concentration and mean velocity are 
readily calculated. 

We present results for a linear electric potential U(x) = — |^^7|a', 0 < J- < L, where q is electron 
charge, E is the electric field, and /. is the length of our device structure. (Note, our approach is also 
valid for general nonlinear potentials.) The characteristic solution[2] for this problem suggests the 
distribution parameterization f(x,v) = g(x)oxp(-/3v2) for v < I>(J-), and f{x,v) = 0 for i > r ( j ) ; 
where /? = mm/2kHT, m* is an appropriate effective mass, kB is Boltzmann's constant, and T is 
absolute temperature. The distribution / is parameterized by two functions y and r depending on 
position x. We have assumed the injection of an equilibrium Maxwellian distribution of carriers at 
x = L, while no carriers are injected at x = 0. 



Weak scattering is included in our formulation by means of a relaxation time r . The zeroth-
and first-order velocity moments yield 

±[gexp(-l3v2)} = 0, 
ax 

exp(— /3v2) 

1 + erf(v^w). ' 

Above, wth is the thermal velocity (2kBT/m")1'2 and A is the mean free path vthr. We impose 
the boundary conditions 6(0) = 0 and g(L) = 1.0 (dimensionless units). Our natural parametric 
representation substantially improves computational efficiency in that the phase-spare Boltzmann 
equation has been reduced to two ordinary differential equations in real space. 

To aid in the presentation of results, we introduce the dimensionless quantities X = X/L and 
R = \qE\L/kgT. The smallest value of A used is 0.6£, which keeps the analysis in the ballistic 
regime. Figure 1 portrays the carrier concentration n in terms of dimensionless density sfwn(x/L) 
(normalized to the injected distribution) versus position. For a given A, the concentration is a 
maximum at x = L and is a minimum at x = 0. At x = L, concentration is smallest for A = oc, 
increasing as A decreases. This behavior is consistent, with the fact that increasing scattering 
strength confines a greater number of carriers at the low end of the potential. Complementary 
behavior is observed at x = 0. 

In Fig. 2, the logarithm of current density J is plotted as a function of 11 for A = 5.0. We find 
excellent agreement with the expected log-linear result from thermionic-emission theory. 

Currently, we are extending our moment method in three ways: (1) a unified description of 
collision-dominated and collisionless transport, (2) generalization to two and three dimensions, and 
(3) application to quantum transport by means of the Wigner-Boltzmann equation. 
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Figure 1: Carrier concentration for field-retarded flow for R = 1.0. Solid triangles X = «», 
open triangles X = 5.0, solid squares X = 1.0, and open squares X = 0.6. 
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Figure 2: Ln(J) vs. R = [qE| UKBT for field-retarded flow, X = 5.0. 




