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Abstract

Ballistic effects play a central role in understanding transport in submicron devices. We present a
new moment method for ballistic transport in a one-dimensional semiconductor device structure.
[n the ballistic regime, our moment inethod is computationally efficient compared with spectral
and Monte Carlo methods. Here, we have extended this moment method from field-assisted to
field-retarded flow. Results for the spatial, field, and (weak) collisional dependencies of low-order
moment variables are presented.

Summary

In a previous report,[l] a new moment method was developed and applied to the study of field-
assisted ballistic transport in a onec-dimensional semiconductor device structure. This moment
mecthod is based on the characteristic solution of the collisionless Boltzmann equation. We have
found the method to be computationally efficient, for a given level of accuracy, compared with
conventional Boltzmann solution methods (spectral, direct iterative, or Monte Carlo).

Here, we extend our method to the field-retarded case. ‘The distribution function is parame-
terized in a form corresponding to the exact collisionless characteristic solution for field-retarded
flow. Upon substituting the paramecterized distribution into Boltzinann’s equation and evalnat
ing velocity moments, a set of nonlinear ordinary diflerential equations governing the distribution
parameters follows. Macroscopic quantities such as carrier concentration and mean velocity are
readily calculated.

We present. results for a linear electric potential U(2) = —|gE|r, 0 < » < L, where ¢ is electron
charge, E is the clectric field, and L is the length of our device structure. (Note, our approach is also
valid for general nonlinear potentials.) The characteristic solution[2] for this problem suggests the
distribution parameterization f(z,v) = g(z) exp(=Bv?) for v < v(x), and f(x,v) =0 for ¢ > v(x);
where # = m*/2kgT, m* is an appropriate effective mass, kg is Boltzinann’s constant, and 7" is
absolute temperature. ‘The distribution f is parameterized by two functions g and v depending on
position z. We have assumied the injection of an equilibrium Maxwellian distribution of carriers at.

z = L, while no carriers are injected at 2 = 0.
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Weak scattering is included in our formulation by means of a relaxation tine 7. The zeroth-
and first-order velocity moments yield

d o
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Above, vy, is the thermal velocity (2&3?’/111“)1/2 and A is the mean free path vy, 7. We impose
the boundary conditions 9(0) = 0 and g(L) = 1.0 (dimensionless units). Our natural parametric
representation substantially improves computational efficiency in that the phase-space Boltzmmann
equation has been reduced to two ordinary differential equations in real space.
To aid in the presentation of results, we introduce the dimensionless quantities A = A/L and
R = |qE|L/kgT. The smallest value of A used is 0.6L, which keeps the analysis in the ballistic
regime. Figure 1 portrays the carrier concentration n in terms of dimensionless density /mn(z/1)
(normalized to the injected distribution) versus position. For a given X, the concentration is a
maximum at £ = L and is a minimum at * = (0. At # = L, concentration is smallest for A = o,
increasing as A decreases. This behavior is consistent with the fact that increasing scattering
strength confines a greater number of carriers at the low end of the potential. Complementary
behavior is observed at » = (.
In Fig. 2, the logarithm of current density J is plotted as a function of R for A = 5.0. \We find
excellent agreement with the expected log-linear result from thermionic-emission theory.
Currently, we are extending our moment method in three ways: (1) a unified description of
collision-dominated and collisionless transport, (2) generalization to two and three dimensions, and
(3) application to quantum transport by means of the Wigner-Boltzmann equation.

References

[1] S. C. Tiersten and Y. L. Le Coz, “A New Moment Method for Ballistic Solution of Boltzmann’s
Equation in Semiconductor Device Structures”, Proceeding of the ISDRS-91, Charlottesville, Va.,
pp. 101-4.

[2] Y. L. Le Coz, Semiconductor Device Simulation: A Spectral Method for Solution of the Boll:-
mann Transport Equation, Ph. D. thesis, Massachusetts lustitute of Technology, 1088,


file:///ffJirX

Normalized Concentration

Ln(J)

235

3.52 -

3.08

2.64

2.20

1.76

1.32

0.88

0.00 0.20 0.40 0.60 0.80 1.00 1.20
Position, X/L

Figure 1: Carrier concentration for field-retarded flow for R = 1.0. Solid triangles A=
open triangles A = 5.0, solid squares A = 1.0, and open squares A = 0.6.
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Figure 2: Ln(J) vs. R = |qE| UKRgT for field-retarded flow, A =5.0.





