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Abst rac t 

A new multi-band Monte Carlo model SLAPSHOT (SimuLAtion Program Suitable for HOt carrier 
sTudies), which combines high CPU efficiency and physical accuracy is described. This model uses an 
electronic bandstructure calculated by the pseudopotential method to generate a three dimensional scattering 
rate table and uses a fitted multi-valley, multi-band band model for electron free-flight and post-scattering 
momentum selection. The fitted bands include 65 valleys and their parameters are determined by fitting 
both the density of states and the E(k) dispersion relation of the pseudopotential bands. 

I. Introduction 

The pressing need for accurately modeling high energy and nonlocal effects in deep submicron silicon 
MOSFETs makes Monte Carlo (MC) particle simulators a necessary tool for device engneers. One critical 
ingredient in all MC simulators is the electronic band structure of the material. The widely used simple 
parabolic or nonparabolic band model is not sufficiently accurate for modern deep-submicron devices in which 
high energy carriers complicate the device analysis. In order to model high energy processes accurately, Tang 
and Hess of Illinois[l] pioneered the use of the full band structure in their MC code. The "state of the art" 
of full band MC was further developed by Fischetti and Laux at IBM in their DAMOCLES code [2-3] which 
not only uses the full band E(k) dispersion relation in the free flight, but also in electron-phonon dynamics 
(i.e. scattering rate calculations and momentum selection after scattering). This model, however, requires 
a tremendous amount of CPU resources and is costly for day-to-day device design. In order to improve 
computational efficiency, several authors have proposed new fitted band models[4-5]. In these approaches, 
the density of states (DOS) calculated from a full band is fitted with many isotropic nonparabolic bands. 
This approach introduces a tremendous savings in CPU time and partially includes the full band effect in 
the model. However, the E(k) dispersion relation used in these models differs from that of the full band and 
may pose some problems. Even if the total scattering rate is accurately calculated, different E(k) dispersion 
relations will bring carriers to different energy states during free flights and these states are coupled back to 
dynamical scattering and may well alter the scattering rate due to a wrong post free-flight electron energy. 
The incorrect dispersion relation also affects the calculation of electron velocity and position. This is serious 
because in modern devices the electric field may change very rapidly in space. Even a small error in electron 
position may result in putting the electron in a very different electric field. Moreover, using a fitted isotropic 
E(k) relation also omits the anisotropy of the DOS during post-scattering momentum selection, which will 
lead to a similar problem. 

I I . M o n t e Car lo Mode l 

In this paper, we describe a new model which uses both full band and fitted anisotropic multi-valley 
bands to address the above problems without a significant increase in the CPU time. In our model, phonon 
and ionized impurity scattering rates are calculated by using the first two pseudopotential energy bands. 
The numerical method used is the modified Gilat-Ftaubenheimer (G-ll) approach [6-7] in where the Brillioun 
zone (BZ) is divided into small cubes and the argument inside of the energy conservation delta function is 
linearized (similar to the approach used in the IBM model[2]). The electron-phonon scattering rate is given 
by: 
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where n is a phonon mode, v and v' are initial and final band indices, A is a coupling constant, \q\ is 
the overlap integral (assumed to be unity in this paper). The phonon energy and occupation number is 
expressed as hwn and Nt, respectively. A constant of 62 meV is used for the optical phonon and IBM's 



acoustic phonon dispersion [2] is used for both longitudinal and transverse acoustic plionons. Equation 
(1) can only be evaluated accurately by the modified G-ll method because of the complexity of the band 
structure and phonon dispersion relation. Both acoustic and optical phonon scattering rates can be written 
as summation of terms of the following form: 

P(k 
J HZ 
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The entire BZ is divided into tiny cubes and in each cube the argument inside of the delta function can be 
approximated by its first order Taylor series expansion: 

Ev(k) - E„.{k T q) T M « ) = A(k,qm) + B(k,?m) • q' (3) 

Where qm is the center of the cube and q' is the local phonon momentum as measured from the center of 
the cube. The volume element of the integration in each cube is separated as the product of the momentum 
projected on B and the area perpendicular to B inside of the cube daq' = dq'S. The three dimensional 
integration of scattering rate can then be written as the sum over all the cubes in the BZ. 
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Where .4 = E„{k) - £ > ( £ T q,n) =F Mf»») and B = -VE„-(k^ qm) T hVwn(qm). The area inside the cube 
on the plane B • q' + A = 0 is given by %( |^ [ ) . The area S is then classified according to its distance A 
and orientation B relative to the center of the cube. The formulae for eacli shape of S are given in reference 
[6-7]. Note that only when the gradient of phonon energy is zero is the scattering rate proportional to the 
density of states. This is another reason that the band structure model needs to fit both the DOS and 
the E(k) dispersion relationship. In this way, we are able to include the DOS effect as well as the complex 
anisotropy of the E(k) dispersion relation. This is especially important for silicon since the first band minima 
is very close to to the BZ edge and the second band minima and the existence of the zone edge decreases 
the DOS and makes the equi-energy surfaces distorted from the regular ellipsoidal shape. Although such 
calculations require a fair amount of CPU time, they only need to be done once. Figure 1 shows the total 
phonon scattering rate after the DOS weighted average. The slight difference from that of IBM[3] may be 
caused by our assumption of an unity overlap integral and slight different coupling constants. 

Figure 1. Total electron-
phonon scattering rate vs. 
electron energy calculated 
by averaging over the DOS 
of all valleys at 300K. IBM 
and other groups' scattering 
rates are also shown for 
comparison. 
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The scattering mechanisms included in this model are intravalley and intervalley acoustic phonon with 
both longitudinal and transverse modes, intravalley and intervalley optical phonon and ionized impurity 
scattering. The acoustic and optical phonon coupling constants are given below. We want to stress that 
only two coupling constants arc used in our simulator for all electrons in the different valleys and different 
bands. 

Ei- E, = l.8cV 

DK - .1.4 x 10 \ V/cm 



I I I . F i t t e d M u l t i - v a l l e y B a n d 

For free (light, and momentum select ion after scattering, the fitted anistropic multiple valley bands are 
used. The DOS of both pseudopotential hands and fitted bands are calculated by the G-Il method described 
above. The effective masses and nonparabolicities of the 65 valleys of the fitted bands are determined by 
fitting the DOS (Fig. 2) and E(k) dispersion relation (Fig. 3) of the first and second pseudopotential bands. 
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Figure 2. Comparison of DOS calculated 
from fitted bands and from pseudopotential 
bands. 
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Figure 3. Comparison of E(k) dispersion 
relation of fitted bands (solid line) and pseudo-
potential bands (dashed line) in several cuts 
along principal directions. 

The boundaries of valleys are determined when two neighboring valleys have the same energy. The 
transitional regions are smoothed to provide a continuous electron energy and group velocity. The fitted 
bands satisfy all symmetries of the point group with correct degeneracy. The symmetry requirement restricts 
the number of effective masses to four in the first band and five in the second band. Table 1 lists the optimized 
band parameters for the first and second bands. 

Table 1. The band parameters 

Valley 

Index 

00 

01 

02 

10 

11 

12 

13 

Degene

racy 

6 

24 

8 

6 

12 

1 

8 

Orien

tation 

(100) 

[100} 

(111) 

1100} 

{100} 

{100} 

fill} 

Mi (mo) 

0.87 

0.87 

1.60 

0.30 

0.30 

0.55 

2.70 

Mt (mo) 

0.31 

0.31 

0.22 

0.12 

0.12 

0.55 

0.65 

a( l /eV) 

0.20 

0.20 

0.065 

0.28 

0.28 

0.80 

0.20 

Kmin 

(2nfc) 

0.85,0,0 

1,1,0.15 

0.5,.5,.5 

1,0,0 

1,1,0 

0,0,0 

0.5..5..5 

Emin (eV) 

0.0 

0.0 

1.04 

0.13 

0.13 

2.31 

2.87 

Despite the fact that some valley minima fall outside of the BZ, part of the valleys are inside and those 
valleys are necessary to ensure the lattice translation symmetry and continuity of the band. The momentum 
selection after scat ter ing is similar to IBM's "unified" model where all available s tates with correct final 



energy arc searched and one is chosen by a rejection method. The transitional probabilities of final valleys 
which are needed by the rejection method are precalculated jus t like the scattering rates. All scattering 
between the 65 valleys is included. The use of group theory greatly simplifies the complex algorithms of 
selecting the final band, valley and momentum, especially for acoustic phonon scattering where the scattering 
probability depends on both the DOS of the final valley and the phonon momentum. It also saves memory 
resources by storing the bands!ructure and scattering rates only in the irreducible wedge which is only 1/48 
of BZ. T h e CPU speed is also enhanced through the reduction of the search area of the bandstructure and 
scattering rate table. The symmetry operations (and their inverse) take very little CPU time since all point 
group operations are only a series of axis permutation and reflection and no 3 by 3 matrix manipulation is 
needed. Figures 4 and 5 display simulation results and compare them to available experimental d a t a as well 
as results presented by other Monte Carlo researchers. 
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Figure 4 . Electron drift velocity in (111) 
and (100) at 300K. Results are compared 
with experimental data from reference [9]. 

Figure 5. Simulated electron energy at 
room temperature for (111) and for (100). 
Data from reference [2] is also shown for 
comparison. 

I V . S u m m a r y 

In summary, we have developed a very highly efficient MC code which uses a full hand s t ruc ture for 
accurate scattering rate calculations and uses fitted bands for free flight and momentum selection after 
scattering. The anisotropic model band fits both the DOS and E(k) dispersion in all principal directions. 
Using this model, we are able to get a high degree of accuracy in high energy transport with the efficiency 
of a simple single band simulation. 
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