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Abstract 

The efficient parallel implementation of a 3-D Monte Carlo device simulator is described. 
The parallel algorithm was implemented on a 64 node nCUBE multicomputer and its accuracy 
was validated by generating the static characteristics of a MESFET. Timing measurements were 
made to study the variation of the speedup of the parallel program as a function of the number of 
processors. We identify the sources of speedup loss and discuss several techniques for improving 
the speedup. 

1. INTRODUCTION 

The Monte Carlo technique is a numerical method for solving the Boltzmann's transport equation 
that is considered more physically accurate than device analysis tools based on the drift-diffusion 
(DD) model. However, models based on this technique are very computationally intensive, and 
therefore can greatly benefit from the vast computational power of today's parallel processors. 
In this paper we consider the parallel implementation of a 3-D device simulator on a hypercube 
multicomputer. 

2. THE PARALLEL MONTE CARLO ALGORITHM 

The flowchart of a typical Monte Carlo program for device simulation is shown in Figure 1 [1]. The 
parallel algorithm is an extension of the k-space Monte Carlo simulation with the addition of real 
space position of each simulated particle and the assignment of particle charge, using a cloud-in-
cell scheme, to solve the Poisson's equation with the particle dynamics. The addition of the real 
space positions necessitates a geometric partitioning of the device, in which the grid is divided into 
three dimensional subgrids and assigned to processors using a gray code mapping. The parallel 
implementation of the Poisson's solution is based on an iterative method [2] that uses an odd/even 
ordering with Chebyshev acceleration. In order to make the communication during Monte Carlo 
simulation more efficient, each processor maintains a small buffer region of several layers of cells 
surrounding its subgrid. This region, called an external interaction region [3], is used to store 
the potentials of grid points owned by neighboring processors as well as to hold the particles that 
will move to these outer regions during the simulation of a time step. Communication between 
processors occurs during the solution of the Poisson's equation, the charge assignment, the contact 
simulation, the statistic gathering, and at the end of each time step when transferring particles 
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and fetching the potentials belonging to external interaction regions. The global communication 
that occurs during contact simulation and statistic gathering is handled efficiently using a binary 
tree routing scheme. The sequence of random numbers for each node process during Monte Carlo 
simulation is generated efficiently using the "Lehmer tree" concept [4]. 
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Figure 1: The Flowchart for Monte Carlo Device Simulation 

RESULTS A N D DISCUSSION 

The parallel program was implemented on a 64 node nCUBE multicomputer at Oregon State Uni
versity. The nCUBE consists of a host processor and an array of processing elements interconnected 
in a topology called a hypercube. Each node in the nCUBE system consists of a proprietary 32-
bit VLSI CPU, 512 Kbytes of local memory, and 11 bidirectional Direct Memory Access (DMA) 
communication channels to handle communication with other nodes and the host processor. The 
nCUBE CPU performs arithmetic operations at the rate of about 100000 floating point operations 
per second [5]. 

As a prototype of the simulated device we have used a GaAS MESFET that is similar to the 
one described in [1]. The MESFET consists of a thin (0.16 fim) epitaxial layer of doped GaAs 



grown on a semi-insulating GaAs substrate. The epilayer and substrate doping are 1017cm -3 and 
5 x 101 5cm - 3 respectively. Three large pads of approximately (200 X 200)^m2 form the source, 
drain, and gate contacts. The separation between the source and the drain is about 3.8 fim. The 
source and the drain are assumed to be low resistance ohmic contacts, while the gate is assumed to 
form a Schottky barrier between the metal and the substrate. Only the active region of the device 
was modelled on the computer. The total device thickness was 5.12 fim while the thickness of the 
substrate was 0.16 fim. The test results were generated for a uniformly discretized grid of spacing 
0.02 fj,m. To compare to 2-D results, only a few grid points in the z direction were considered. 

The static characteristics of the simulated device are shown in Figure 2 These results were 
obtained for a 256 X 16 X 4 grid using 24000 particles on a 64 node nCUBE. A time step of 0.05 
ps was used for updating the potentials. The execution time to simulate 12 ps was about 5 hours. 
The distribution of electrons at the normal operating point Vp — 3.0F and VQ = —1.02F is shown 
in Figure 3. These results were generated for a 256 X 16 X 2 grid using 12000 particles and 32 
processors. 

2G-

10-

Q -

• 
a 
• 

I r— 

B 

* 

S 

• 

a -0.8 

-1.02 < 
6 

0 1 2 3 1 

Vd(V) 

Vg(V) 

Figure 2: Static Characteristics 
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Figure 3: Distribution of Electrons 

Timing measurements were made to study the variation of speedup as both the problem size 
and number of processors are varied. The speedup of a parallel program is defined as the ratio 
Ti/Tp, where 7\ is the execution time on a single processor and Tp is the execution time on P 
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processors. Figure 4 shows the speedups of the parallel program. For the test problem considered 
the speedup on all 64 processors is about 44. About 14 percent of this speedup loss is due to the 
communication overhead and the small serial component of the parallel program. The rest is due 
to the load imbalance on processors caused by the formation of the depletion region underneath 
the gate as shown in Figure 3. The execution times for processor 0 used in these computations are 
based on estimated values. 
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Figure 4: Speedups of the Parallel Program 

Several methods are being investigated to increase the speedup. One is by dynamic balancing 
of load where the boundary surfaces shared by processors are adjusted by small amounts to reduce 
the load imbalance [3]. In this case the cost of rebalancing must be traded off against the lost 
time of having an imbalance in work load. The second method is based on the usual technique for 
enhancing rare events in Monte Carlo simulations, [6] where a particle entering a region with few 
particles is multiplied k number of times and a particle leaving that region is kept in the simulation 
with a probability 1/k, with appropriate adjustment of the superparticle charge. 
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