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A B S T R A C T 

A single electron transport model incorporating the dynamical interaction of an electronic state wi th lattice 

phonon states in quantum confined structures is presented. Collisional broadening is incorporated in an 

algorithm for the numerical solution of the three-dimensional time-dependent Schrodinger equation via the 

beam propagation method. A double-sided Feynman diagrammatic approach is used to incorporate the decay 

rate for the diagonal components of the density matrix in a closed two-level system. These decay rates are 

obtained through a self-consistent solution of the Dyson equation. The damping approximation is used to 

factor the double-sided Feynman diagram into a product of the wave function and its complex conjugate, 

thus effectively decoupling these quantities to enable independent numerical solutions. By tracking the off-

diagonal density matrix elements in t ime, quantum coherence effects can be obtained. 

I. INTRODUCTION 

With the decrease of characteristic device sizes to the ultra-submicron range, 
much effort has been generated in developing models for quantum mechanical electron 
transport in semiconductors. A number of different approaches have been proposed (see 
[1] for a recent overview), but at present no satisfactory treatment of electron-phonon 
interaction dynamics exists within the context of a tractable numerical model for 
quantum transport in a realistic device. We present an approach that solves a transient 
transport problem based on first principles and which includes a dynamical treatment of 
the electron-phonon interaction for electron transport in quantum confined structures. 
This approach is general enough to account for collisional broadening, intra-collisional 
field effects and quantum coherence. 

Our technique involves numerically solving the single electron, three-
dimensional, time-dependent Schrodinger equation using the beam propagation method 
(BPM) [2]. The electron-phonon interaction is modeled in the dipole approximation, 
with alternating absorption and emission (i.e., a two state density matrix) of mono-
energetic phonons from a thermal bath. Collisional broadening is incorporated with the 
aid of double-sided Feynman diagrams [3] in conjunction with a self-consistent solution 
of the Dyson equation in differential form in the time domain (i.e., renormalization of 
the free electron propagator for the density matrix). 

II. NUMERICAL SCHEME 

The time dependent, three-dimensional Schrodinger equation 

itM = m 
at 

is solved using BPM, in which the wave function * ( r , t ) is advanced in time by an 
amount At according to 

*(r , t+At) = PQP*( r , t) + 0[(A£)3] 



where 
P — expf _ iHo AJ\ 

n 2 ) (1) 

Q = exp[- i/h J]**1 H'(t') dt'~] (2) 

H0 = -h2V2/2m' 

"• = "bias + He-hand + ""ef-ph 

In (1), the operator P applied to *(r,£) is equivalent to solving the unperturbed 
Schrodinger equation over a time interval At/2. This step in the solution can be 
obtained using a band-limited Fourier series for * ( r , t). This numerical procedure is 
done efficiently and accurately using the fast Fourier transform (FFT) algorithm. The 
Q operation is applied, by simple multiplication, causing a change in the phase factor at 
At/2 due to the influence of the conduction band potential and perturbed Hamiltonian. 
This is followed by a second P operation to evaluate the wave function * after the full-
step propagation time At. This routine is then continued over subsequent At time 
steps. 

III. TREATMENT OF THE ELECTRON-PHONON INTERACTION 

The electron-phonon interaction in the dipole approximation is given by 

H. el—ph = ^2 Vq(aqe
%9'r+ aqe

 %q'r)e 
iUlqt 

where Vq is the electron-phonon coupling strength, and aq (af) is the annihilation 
(creation) operator of a phonon with mode q. In the present study, only single phonon 
processes with energy hwq are considered. 

Collisional broadening, intra-collisional field effects, and quantum coherence can 
all be accounted through first principles using a diagrammatic technique for the density 
matrix. The double-sided Feynman diagram in Fig. 1 illustrates the dominant time 
ordering of the electron-phonon interactions associated with the density matrix for a 
closed two-level system. In Fig. 1, the initial state at t ime U corresponds to the ground 
state, pn. From ta to £, the electron propagates, absorbs a phonon w?, propagates 
further, and then emits a phonon uq, returning to the state pn. This propagate, 
interact, propagate, interact, etc., scheme corresponds exactly to the BPM algorithm 
(PQPQ...). 

Collisional broadening is naturally accounted 
for by renormalization of the diagonal components of 
the density matrix free electron propagator due to the 
absorption and emission of phonons. This 
renormalization is accomplished by summing up all 
the diagrammatic contributions to infinite order for 
the exact propagator for state pn as shown in Fig. 2 
(For the closed system considered here, tr(p) = 1, 
hence P22 = 1 — Pn)- In k-space, the exact propagator 
P r , can be written as 
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PT = P„ + P , QFc QP 0 + Po QP 0 Q P a QP 0 QPQ + ... 

= P . + P0[C?P0Q{P0 + PoQPoQPo + •••}] 

= Po + Po QPo QPT 

Solving for PT yields the Dyson equation 

Po 

where 

PT ~ 1 - PoQPoQ (3) 

Po(At) = exp ih2k2 

h2mm At 

and where both P0 and PT are propagators for a timestep At. The self-energy operator 
QPoQ in (3) leads-to an exponential decay of the population state pn, and in turn 
results in a broadening of the population lifetime. To incorporate (3) in the BPM 
routine for solving Schrodinger's equation, requires determining the relation between 
the propagators for both the density matrix and the wave function. Since we are 
considering a closed system, the damping approximation [4] can be used to write 

P(k,k',t) = * ( M ) * * ( k , , l ) 

/ > ( k , M ) = * ( k , t ) * ' ( l c , <) 

Polarization 

Population 

(4) 

(5) 

which implies that the propagators for both the density matrix and the wave function 
are identical. Equations (4) and (5) in general are not valid for higher level systems 
which require including all possible time orderings of electron-phonon interactions. 

Intra-collisional field effects are automatically accounted for in this formalism 
since the interaction term Q in (3) includes the exact Hamiltonion for the applied (or 
self-consistent) electric field. Quantum coherence effects are easily obtained by tracking 
the phase of the off-diagonal density matrix elements with time. 



IV. NUMERICAL EXAMPLE 

To illustrate the numerical solution of Schrodinger's equation using BPM, we 
have solved for the time evolution of an initial three-dimensional gaussian wave packet, 
in the electron quantum wire coupler of Fig. 3. The wave packet was injected in the 
left guide at £=0 with a directed energy of 0.14 eV in the z-direction. The device 
dimensions were chosen with L*=400nm, s = 4nm, and w = h=5nm. The number of 
computational grid spacings was taken as N* = Ny = 32, and N* = 128, while the time 
step At was 0.1 fs. For this example, there was no applied bias and electron-phonon 
scattering was not included. Figure 4 shows the probability amplitude at t=0 and 60 fs. 
In a future paper, electron-phonon scattering will be incorporated in the numerical 
model following the procedure outlined here. 

Figure 4. Dimensions are in angstroms. 
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