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Abs t rac t 

A new efficient self-consistent multisubband model for calculation of scattering rates of elec­
trons in the quantum well structures is presented. Yokoyama and Hess1 previously presented 
a field-dependent model for calculation of electron mobility in Al\-xGaxAs/GaAs single well 
heterostructures by using a self-consistent Monte-Carlo simulator, which provides an accurate 
estimation of carriers mobility, but with very high computational expense. We previously re­
ported a self-consistent Schrodinger-Poisson solver2,3 in a two-dimensional numerical model for 
High Electron Mobility Transistor. In this paper we have used our Schrodinger-Poisson solver and 
have calculated the field-dependent, energy-dependent scattering rates of electrons in the five low­
est subbands in the quantum well of an Al\-TGaxAs/GaAs heteroface. Our model predicts the 
scattering rates with almost the same accuracy, but with considerably less computation efforts. 
In our simulations we have applied external bias and computed the two-dimensional mobilities 
throughout the structure. The mobilities are calculated from the scattering rates due to polar op­
tical phonons and ionized impurities. Intersubband scattering as well as intrasubband scattering 
mechanisms are included in the model. 

The results obtained agree well with those reported by Yokoyama and Hess1. The scattering 
rates calculated have been used in a two-subband two-dimensional self-consistent numerical model 
for High Electron Mobility Transistor which is reported elsewhere in this Proceedings.4 

I. Introduction 

To accurately model the behavior of a High Electron Mobility Transistor (HEMT), one must use 
a field-dependent energy-dependent mobility model. The variations in the electric field throughout 
the channel (as governed by Poisson equation) and existence of different subbands with different 
eigenenergies (as governed by Schrodinger equation) necessitate a self-consistent calculation of the 
electron mobility in the HEMT structure. Further complications arise when electrons are scattered 
from one subband to another. Other researchers have undertaken the task of studying the carriers 
transport in HEMT, mainly, and most accurately, by Monte-Carlo simulation of one kind or another. 
Wang and Hess5 have studied the distribution of electron velocity at high fields using a three-
dimensional Monte Carlo, neglecting the quantum effects. Yokoyama and Hess1 have self-consistently 
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included the quantum effects in their Monte Carlo simulator and studied the electronic transport in 
a single well heterostructure. The Monte Carlo method they used is very computationally intensive. 
The computations involved can greatly be reduced, without significant loss of accuracy, by employing 
a two-dimensional model based on the moments of Boltzmann Transport Equation. We2,3previously 
extended Widiger's6 work to include the effect of the quantization of the electrons in the quantum 
well by means of a self-consistent treatment of Schrodinger's and Poisson's equations. 

In this paper we have used our previous Schrodinger-Poisson solver to evaluate the scattering rates 
due to polar optical phonons and remote ionized impurities. The results obtained agree well with 
those reported by Yokoyama and Hess1. These scattering rates are used to calculate the mobilities 
which have been used in a two-subband two-dimensional self-consistent numerical model for High 
Electron Mobility Transistor which is reported elsewhere in this Proceedings4. 

II . Self-Consistent Calculation of Scattering Rates 

Our Schrodinger-Poisson solver consists of a simultaneous solution of Poisson equation: 

d2V d2V a 

~d^ + W=
 e

[ND(x'y) ~ n{x>y)]' (1) 

and Schrodinger equation: 

- ^f^T- ~ flWx, »)*((*) = KM*) (2) 

Together with the two higher moments of Boltzmann Transport Equation: 

d[tii(x, t)] 
= V.[-Hini(x,t)VV(x) + V(Dim(x,t))] + G{ i = 1.....5 (3) 

= -J.VV(x) + V.(-nEtini(x, t)Ei(x, t)VV(x) (4) 

dt 

d(ni(x,t)Ei(x,l)) 

dt 
+V(DE,ini(x,t)Ei(x,t))) + Fi t = l , . . . , 5 

In these equations n and J are the electron concentration and current, respectively, /i,-, /?,-, fiE,i, 
and DE,i are the mobility, and diffusivity of carriers, and energy flux, respectively. The terms G{ 
and F{ account for the transfer of electrons and their energies among the subbands. 

The polar optical-phonon scattering and the ionized impurity scattering arc the main scattering 
mechanisms encountered in III-V compound semiconductors. For independent scattering mecha­
nisms, the total scattering rate is defined by:7 

i = p- + i = E5(Ki'K2) (5) 
'tot Ttot 'tot 

where the subscript / denotes impurity scattering and pop, the polar optical-phonon scattering, r 
is the relaxation time, and S (K l 5 K2) is the probability of an electron being scattered. The polar 
optical phonon scattering rate is given by:8 

npop _ e ^ 0 

OWCQ 
^-^](Ni + ̂ ±r2)xJ^^6(E(k2)-E(kl)±hu}0)dk2 (6) 

6 D. J. Widiger, I. C. Kizilyalli, K. Hess, and J. J. Coleman, IEEE Trans. Electron Devices, vol. ED-32, 1092-1102, 
1985. 
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Figure 1: Wavefunction for (a) first, (b) second, and (c) third subbands. (nm) 

where, CQQ and ca are the optical and static dielectric constant, HUQ is the polar-optical-phonon energy, 
Q is the phonon wave-vector component parallel to the interface, ki and 1<2 denote the initial and 
final state wave vectors. Nq is the phonon occupation number, and E(k\) and E(k2) are the initial 
and final state energy. #mn(Q)'s are the multisubband coupling coefficients. 

The ionized impurity scattering rate is given by: 

& = - ^ / \Mmn(Q)\H(E(k2) - £(kx))dk2 

The matrix elements Mmn(Q) account for the electron-impurity interactions. 

(7) 

I I I . Results and Conclusions 

The wavefunctions, ^,-, for the first three subbands are shown in Fig. 1. The wavefunction for 
the first subband peaks at a distance of about 17 nm from the heterojunction, to a value of about 
1000/y/cm. The highest peak for the second subband is located at 22 nm, and for the third subband 
at 24 nm. The multisubband coupling coefficients H\n{Q) are shown in Fig. 2 along with those 
reported by Itef. [1]. The agreement between the two sets of data is good. The polar optical-phonon 
scattering rates as a function of energy for the first subband at 300°K are shown in Fig. 3. Again, 
the agreement between the results of our model and those calculated by Ref [1] is very good. 

The calculated values of |Mmn(2o)|2 vs location ZQ (a generalized position coordinate; in our case 
xQ) at 300°K with Q = 1.86 a: 106 for (1,1) transitions, and Q = 1.84 x 106 for (1,2) transitions, and 
Q = 8.22 x 106 for (3,3) transitions are shown in Fig. 4, with the results reported by Yokoyama and 
Hess1 being shown in Fig. (4d). As it was predicted by Ref [1], the peak locations for intrasubband 
transitions coincide with the z,'s. For example, for the (1,1) transitions, that is, the transitions from 
the first subband back to the first subband, the peak is at ZQ = 17nm, as shown in Fig. 4, which 
is the same as the peak of the wavefunction shown in Fig. 1. The ionized impurity scattering rates 
for the first subband are shown in Fig. (5a), and the results obtained by Ref. [1] are shown in Fig. 
(5b), and they are in good agreement. 
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Figure 2: Multisubband coupling coefficients Hin(0), for transfer of electrons from the first subband 
to the other subbands as a function of Q, the phonon wave vector, (a) our model, (b) Yokoyama and 
Hess [1]. 
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Figure 3: Polar optical-phonon scattering rates vs energy from first subband to the other subbands, 
(a) our model, (b) Yokoyama and Hess []]. 
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Figure 4: Calculated values of |Mm n(z0) |2 vs location zQ for (a) (1,1) (b) (1,2), (c) (3,3) intrasubband 
transitions. The results reported by Yokoyama and Hess [1] are shown in (d). 

] < 

CO 

« 

<3 
bO 

.5 
« 
-w 

s 
CA 

InOI • 

7-

J-

J -

I J -

In06-

T-

3 -

\ 
V 

\ 

~"- \ 

" • • - . . , 

*" 

~*. 
-._ 

• " • • - -

V 

^ . 

X 

». . . 

" • < - . 

. ̂  

x̂  \ 

" ~ ^ \ 
*•• 

"***. 
« ̂  

^*** 
40000 600.00 

Energy (eV) 
KOOO 

(a) 

Q2 0.4 0.6 OS 1.0 
Energy (eV) 

(b) 

Figure 5: Ionized impurity scattering rates vs energy for the first subband at 300 K calculated by 
(a) our model, (b) Yokoyama and Hess [1]. 




