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Abstract 

We describe the numerical simulation of ultra-submicron high electron mobility transistors 
using a set of quantum moment equations. The simulation shows that a large change of electron 
density distribution arises from the inclusion of quantum corrections. The total current is increased 
by as mush as ten per cent due to the quantum effects, mainly due to the softening of the gate 
depletion potential resulting in a higher electron density distribution along the channel. Tunneling 
effects do not give a noticeable contribution to the total current in the simulated device. To test the 
ability of the method for describing tunneling, simulation of a resonant tunneling diode with this 
set of equations is also discussed. 

Degeneracy in the Quantum Moment Equations 

We have previously developed a set of quantum moment equations based upon the Wigner 
function equation-of-motion [1,2]. The first approach to explicit quantum corrections are built into 
these equations through the second moment of the Wigner function [3], which results in an average 
electron energy that consists of drift kinetic, thermal, and quantum potential (or pressure) terms. 
Application of these equations to the numerical simulation of ultra-submicron GaAs MESFETs 
demonstrated the expected quantum effects in the devices [3,4]. Here, we apply this model to 
study ultra-submicron quantum barrier devices, e.g. IIEMT, with the investigation of quantum 
effects as the prime objective. As previously, the quantum pressure term serves to soften potential 
variations. This leads to a large change of the density distribution in the channel, with a 
consequent increase in the total current by more than ten per cent. Other than the quantum pressure 
term, described below, these equations are the same as used by others [5|. Here, however, we 
also include carrier degeneracy. Modifications can be made directly to the moment equations by 
assuming a drifted Fermi-Dirac distribution function [6], which is represented by a correction 
factor to the effective electron temperature. The total average electron kinetic energy can now be 
written as: 

w= jm*v 2 + ^TkBT + Uq, (1) 

where Un is the quantum pressure term, 

Uq=~i^VMn), (2) 

and Y is the degeneracy factor, 
y y,lie,u T^ F3/2(^f/*B^) , , . 

Here, Fj is the Fermi-Dirac integral, and \if is the Fermi energy measured from the conduction 
band edge. 



Because the Fermi energy is directly related to the electron density in the conduction band, 
its relation to the density and temperature can be expressed by a drifted Fermi-Dirac distribution 
function [6], 

n = 2 ( ^ * B l ) 3 / 2 F l / 2 0 l f / i k B T ) . (4) 

We do not need to evaluate the Fermi energy explicitly to get the value of the degeneracy factor 7, 
because the Fermi integration is actually determined by the ratio of the Fermi energy and the 
thermal energy, say T̂ f = (if/^gT. From this, 

n/(kBT)M = -yj2 ( ^ f )3/2F\/2(W/kBT ). (5) 

With this expression, we can establish a relationship between the factor n/(kBT)^2 and the 
degeneracy i. This relation can then be tabulated in the simulation program and the degeneracy 
factor handled easily once the density and temperature are computed from the moment equations. 
This process is done self-consistently, but could be approximated by using the values at the 
previous time step. Thus, the inclusion of the degeneracy effect into the moment equations does 
not increase the computational efforts. 

Degeneracy may also introduce modifications to the velocity-field and energy-field 
characteristics [7,8], which in turn will introduce modifications to the relaxation times, as the 
momentum and energy relaxation times are computed from Monte Carlo results. However, if one 
assumes that the increase of the energy due to degeneracy is essentially the thermal energy 
3^B^T/2[9] , then the use of scattering rates from the Monte Carlo results without degeneracy, but 
calculated at T instead of TV, remains a good approximation. We ollow this approach. 

Simulation of IIEMT Devices 

For an ideal AlGaAs/GaAs interface, the transition of the conduction band from one 
material to another is abrupt. Electrons in the quantum well are prevented from drifting into the 
AlGaAs by the potential step (the band offset). Electrons can climb over the potential wall only if 
they have a kinetic energy comparable to the step barrier height. There is a problem in that the 
partial differential equations (primarily the moment equations) do not handle the band 
discontinuity, where an infinite field is met. While an abrupt change in the transition from one 
material to another may be ideal, there is a certain transition region to be expected [9]. In our 
simulation, we assume a 0.3 V potential drop across a 4 nm region at the interface. While this 
seems to be quite wide, it is a statistical average over the actual transition region and the 
wavefunction decay at this interface [10]. 

The doping is taken to be 1.5 x 1018 cm-3 in the AlGaAs and 1.0 x 1014 cm-3 in the GaAs. 
The AlGaAs layer thickness is 40 nm. The high doping density in the AlGaAs helps to confine the 
gate depletion to a size compatible to the gate length. With low doping, a wide potential barrier 
occurs |11]. The lattice temperature is taken to be 300 K. A detailed description of the numerical 
simulation can be found in [3]. The results discussed here are for a 24 nm gate length device. 

The I-V characteristics for a 24 nm gate length IIEMT device are shown in Fig. 1, where 
the gate bias runs from 0 volt to -2.5 volts, in steps of-0.5 volts. In Fig. 2, the electron density at 
the center of the gate is plotted as a function of the distance from the surface into the bulk at a bias 
condition of Vg = -1.5 V and Vd = 1.0 V. In this figure, we show the results with the quantum 
pressure included (solid line) and neglected (dashed line). It is clear that the quantum corrections 
change the interface potential. One can see that for the bias condition of Fig. 2, a parallel 
conduction channel in the AlGaAs is present. 
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Fig. 1. I-V characteristics. 
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Fig. 2. Electron density distribution across 
the conduction channel as the function of 
distance to the gate contact. 

The drain current is plotted in Fig. 3 for a gate bias of-1.5 V. These results illustrate the 
various cases. The increase of the current with degeneracy included is expected, as the scattering 
rates are lowered because of the lack of empty states at the final state due to Pauli exclusion [7]. 
Degeneracy is prominent only close to the source where the effective electron temperature is low. 
Because the length scale of the device is small, electrons entering from the source contact will 
travel through the low-field region in a short time. Monte Carlo simulation of the time evolution of 
electron velocity predicts that the transient velocity is larger for a degenerate case on a short time 
scale (about 0.5 picosecond) as the field is turned on [8]. This also suggests that electrons will 
have higher velocity with degenerac> included, resulting in a higher drain current. 
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Fig. 3. Drain current characteristics for Vg = -1.5 V. 
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Fig. 4. Drain current characteristics 
at Vg = -1.5 V. 

The quantum corrections serve to smooth the classical potential, which in turn smoothes the 
electron density distribution. As can be seen in Fig. 2, quantum corrections introduce a large 
change in the density distribution. The density peak is reduced in the AlGaAs and increased in the 
2-D gas when the quantum corrections are included. In the AlGaAs the electron density 
distribution under the gate (along the channel) is relatively flat, when compared to the direction 
normal to the interface. The interface potential is broadened (towards the gate) and quantum 



corrections along the channel direction are small, and these effects result in a lower density peak. 
Due to the high electron density in the 2-D gas, the quantum correction along the channel direction 
dominate, so the net effect is an increase of electron density, resulting in a fatter and higher peak. 
Quantum corrections make an appreciable change in the current distribution in the conduction 
channel as a result. This change is as much as 10 per cent increase in the total current with 
quantum effects included, and leads to the differences observed in Fig. 3. 

The increase of the total current, especially the increase of the peak electron density in the 
channel, suggests tunneling processes (through the depletion region included by the gate) may 
occur in the device operation. However, there are two facts suggesting that the process should not 
be interpreted as tunneling. It is well known that the tunneling current should exponentially 
decrease with an increase of the potential barrier. Thus, one expects that quantum effects (such as 
tunneling) will become smaller as we increase the drain voltage or decrease (more negative) the 
gate voltage. The depletion barrier will be widened in both cases. This is not observed in our 
present simulation. The drain current is plotted against gate voltage in Fig. 4 for simulations with 
and without quantum corrections. As can be seen, the current increase due to quantum effects is 
relatively insensitive to the gate voltage. A similar property can be found in Fig. 3, in which the 
current increase due to quantum effects is relatively insensitive to the drain voltage. These results 
lead us to the conclusion that, if there is any tunneling, the tunneling current must be small. 

Simulation of Resonant Tunneling Diode 

The resonant tunneling diode (RTD) is a good subject to test the ability of the quantum 
moment equations in describing the tunneling effect. The modeling method for the IIEMT 
interface barrier may be readily extended to model the barriers of a RTD. For a double barrier RTD 
with the structure of GaAs/AlGaAs/GaAs/AlGaAs/GaAs, one can model the two barriers with four 
step barriers, each step barrier with a transition region of several angstroms. To simulate a barrier 
thickness of 5 nm or less, one may need the smallest grid size to be one or two angstroms. This 
will introduce a electrical field of 10^ V/cm in the barrier transition regions. A suitable numerical 
scheme must be used to deal with these transition regions. We are currently working on this 
problem. 
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