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Abstract

We investigate the bchavior of few-clectron sysicms consisting of tightly-coupled
quantum dots. Specifically, we concentrate on a model cell which consists of five
quantum dots occupicd by two clectrons. The mutual Coulombic repulsion, quantum
confincment, and discrete naturc of the clectronic charge, Icad to ccll states which
cxhibit distinct charge alignments. Electrostatic coupling between neighboring cells is
shown to rcsult in bistable saturation of the cell polarization. Implications of this
bistability for quantum ccllular automata are discussed.

INTRODUCTION

Various investigators have pointed out the natural link between mesoscopic quantum systems and
cellular automata (CA) architectures {1]. Because quantum structurcs arc necessarily so small it is
difficult to conccive of a regimce in which a single quantum device could drive many other devices in
subsequent stages [2]. Furthermore, the connections between devices would tend to dominate the
bechavior of the assembly of devices. For these reasons locally interconnected structures such as cellular
ncural networks and ccllular automata may provide the natural architecture for quantum devices.

A quantum ccllular automaton would consist of an array of cells, cach of which is some sort of quantum
nanostructure. For a two-statc CA, cach ccll should have two stable quantum states. The state of a given
ccll should influcnce the statc of the ncighboring cells. Two ingredicents are cssential then: 1) the
bistability of the ccll, and 2) coupling to ncighboring cclls.

We cxamine a paradigm in which the cell itself is composed of coupled quantum dots [3] occupied by
two clectrons. The bistability is accomplished through the interaction of 1) quantum confinement effccts,
2) the Coulomb interaction between the two clectrons, and 3) the quantization of charge (as in the
Coulomb blockade). The intercellular interaction is provided by the Coulomb rcpulsion between
clectrons in different cells.

FIGURE 1. A quantum cell with 2 electrons.
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The specific cell we consider here is shown in Figure 1. Four quantum dots arc coupled to a central dot
by tunnel barriers. The two clectrons tend to occupy antipodal sites in one of two configurations, shown
in the figurc as thc P=+1 and P=-1 configurations. Our analysis bclow will show that the cell is indeed in
onc of these two stable states, and that an clectrostatic perturbation, perhaps caused by neighboring cells,
switches the ccll between these two states in a very abrupt and nonlincar way.

MODEL

We have calculated the response of the ccll to perturbations in the clectrostatic potential at the sites using
a Hubbard-type Hamiltonian. For the isolated ccll, the Hamiltonian can be written,
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Here a;  is the annihilation opcrator which destroys a particle at site i with spin ¢ (o= / or 2 indicatcs
spin up or down). The number operator for sitc i and spin ¢ is represented by n; . The on-sitc cnergy for
cach dot is Ep; the tunncling amplitude to the central dot is f; the charging energy for a single dot is Ep,
and the Coulombic potential energy for clectrons at sites i and j is V(i ).

The cffect of ncighboring cells is modcled very simply by a change in the on-sitc potential for onc dot
only - the dot labeled 2 in Figure 1. Thus if

V= 250"2.6
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then the total Hamiltonian is
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where o is a paramcter which determines the strength of the perturbation. The cell Hamiltonian is
diagonalized dircctly in the basis of two-clectron states [4]. We can thereby calculate directly the ground-
state two-clectron wavefunction.

It is uscful to definc a quantity which represent the degree to which a given cigenstate of the system
consists of clectrons aligned vertically or horizontally. For cach site, we calculate the single particle
density p;, which is simply the expectation valuc the total number opcrator for the two-clectron
cigenstate. The polarization, P, is defined as

p = (p1+p3) - (pg+p4)
Pot Py +Py+ P3Py,

The polarization thus defined is not to be confused with the usual dipole polarization of a continuous
medium. It simply represents the degree to which the clectrons in the cell are aligned and in which of the
two possible dircctions the alignment occurs. For the states of interest here, the cell is an clectrostatic
quadrupolc with no dipole moment
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FIGURE 2. Polarization of the lowest-energy cell eigenstate. The solid curve is for the singlet spin state and
the dashed curve is for the triplet spin state,

RESULTS

We solve the time independent Schrdidinger cquation using He! above for various valucs of the
perturbation parameter o. For cach value of a, we calculate ground-state single particle densitics, p;, and
the resultant polarization P. For a=0, the isolated ccll, the ground-state is a degencrate combination of
both polarization, P=+/ and P=-1, with no polarization preferred.

The ground-statc polarization is shown in Figure 2 as a function of a. The solid line is for the spin-
singlet, spatially symmetric state and the dashed line is for the spin-triplet, spatially antisymmetric state.
Both show the strong abrupt bistability of the polarization. Even a very small asymmetry in the potential
induces a strongly saturated polarization. For the spin-triplct case, the responsc is indistinguishable from
a step-function.

The cigen-cnergics for the lowest two cigenstates is shown in Figure 3. Encrgics for both the singlet and
triplet spin states are shown. To be of usc in a CA-type design, the energy splitting between the ground-
statc and the first excited state (which have opposite polarizations) must be larger than the thermal
cnergy kpT.

The nonlincar bistable saturation [5] evident from this calculation makes it clcar that this type of cell is a
good candidate for CA architccturcs. We have begun modcling arrays and systems of such cells. The CA
rules for a regular array can be gencrated from the ccll Hamiltonian as follows. For cach combination of
ncar-neighbor polarizations, find the potential on cach site of the central cell. Solve the two-clectron
Schrédinger cquation with that potential and calculate the polarization of the ground state. This process
produces a tablc of CA rules sufficient to completely determine CA behavior. Note that because the
ground-state propcrtics arc always employed, dissipation is assumed in the model [6].

In conclusion, we have identified a model nanostructure which we belicve is an excellent candidate for
forming the basis of quantum ccllular-automata (CA) arrays. It consists of a central quantum dot and four
ncighboring dots occupicd by two clectrons [7]. The Coulomb repulsion between the two clectrons,
quantum confincment cffects, and the discreteness of the clectronic charge, combine to produce strongly
polarized (in the sense defined above) ground states. The responsce of this polarization to the clectrostatic
cnvironment is highly nonlincar and cxhibits the bistable saturation necessary for a two-state CA.
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FIGURE 3. Energies of the two lowest-energy cell eigenstates. The solid and dot-dashed curves are for the
singlet spin state. The dashed and dotted curves are for the triplet spin state.
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