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Abstract 

Wc investigate the behavior of fcw-clcctron systems consisting of tightly-coupled 
quantum dots. Specifically, wc concentrate on a model cell which consists of five 
quantum dots occupied by two electrons. The mutual Coulombic repulsion, quantum 
confinement, and discrete nature of the electronic charge, lead to cell states which 
exhibit distinct charge alignments. Electrostatic coupling between neighboring cells is 
shown to result in bistable saturation of the cell polarization. Implications of this 
bistability for quantum cellular automata are discussed. 

INTRODUCTION 

Various investigators have pointed out the natural link between mesoscopic quantum systems and 
cellular automata (CA) architectures [1|. Because quantum structures arc necessarily so small it is 
difficult to conceive of a regime in which a single quantum device could drive many other devices in 
subsequent stages [2]. Furthermore, the connections between devices would tend to dominate the 
behavior of the assembly of devices. For these reasons locally interconnected structures such as cellular 
neural networks and cellular automata may provide the natural architecture for quantum devices. 

A quantum cellular automaton would consist of an array of cells, each of which is some sort of quantum 
nanoslructurc. For a two-state CA, each cell should have two stable quantum states. The state of a given 
cell should influence the state of the neighboring cells. Two ingredients are essential then: 1) the 
bistability of the cell, and 2) coupling to neighboring cells. 

We examine a paradigm in which the cell itself is composed of coupled quantum dots [3] occupied by 
two electrons. The bistability is accomplished through the interaction of 1) quantum confinement effects, 
2) the Coulomb interaction between the two electrons, and 3) the quantization of charge (as in the 
Coulomb blockade). The intercellular interaction is provided by the Coulomb repulsion between 
electrons in different cells. 
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FIGURE 1. A quantum cell with 2 electrons. 
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The specific cell we consider here is shown in Figure 1. Four quantum dots are coupled to a central dot 
by tunnel barriers. The two electrons tend to occupy antipodal sites in one of two configurations, shown 
in the figure as the P=+l and P=-l configurations. Our analysis below will show that the cell is indeed in 
one of these two stable states, and that an electrostatic perturbation, perhaps caused by neighboring cells, 
switches the cell between these two states in a very abrupt and nonlinear way. 

MODEL 

We have calculated the response of the cell to perturbations in the electrostatic potential at the sites using 
a Hubbard-typc Hamiltonian. For the isolated cell, the Hamiltonian can be written, 

"I*" = E ^ « , a + Z ' K a + a 0 1 a + aO,a+^,o) + 
i, o i, a 

*LEQni,lni,2 + X VQ^J)ni,otli,o' 
i i>j,a,a' 

Here aia is the annihilation operator which destroys a particle at site / with spin 0 (0= / or 2 indicates 
spin up or down). The number operator for site 1 and spin o is represented by n; a . The on-site energy for 
each dot is E0; the tunneling amplitude to the central dot is r, the charging energy for a single dot is Eg, 
and the Coulombic potential energy for electrons at sites i and j is VQ(IJ). 

The effect of neighboring cells is modeled very simply by a change in the on-site potential for one dot 
only - the dot labeled 2 in Figure 1. Thus if 

then the total Hamiltonian is 
Hce" = Hr

Q
ell+aV 

where a is a parameter which determines the strength of the perturbation. The cell Hamiltonian is 
diagonalized directly in the basis of two-electron states [4]. We can thereby calculate directly the ground-
state two-electron wavefunction. 

It is useful to define a quantity which represent the degree to which a given cigenstate of the system 
consists of electrons aligned vertically or horizontally. For each site, we calculate the single particle 
density pit which is simply the expectation value the total number operator for the two-electron 
cigenstate. The polarization, P, is defined as 

( P , + P 3 ) - (P2 + P4) 
P = 

Po+Pl+P2+P3 + P4 

The polarization thus defined is not to be confused with the usual dipole polarization of a continuous 
medium. It simply represents the degree to which the electrons in the cell are aligned and in which of the 
two possible directions the alignment occurs. For the states of interest here, the cell is an electrostatic 
quadrupolc with no dipole moment 
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FIGURE 2. Polarization of the lowest-energy cell eigenstate. The solid curve is for the singlet spin state and 
the dashed curve is for the triplet spin state. 

RESULTS 

Wc solve the lime independent Schrodingcr equation using Hcdl above for various values of the 
pcrlurbalion parameter a. For each value of a, wc calculate ground-state single particle densities, pf, and 
the resultant polarization P. For a=0, the isolated cell, the ground-state is a degenerate combination of 
both polarization, />=+/ and P=-l, with no polarization preferred. 

The ground-state polarization is shown in Figure 2 as a function of a. The solid line is for the spin-
singlet, spatially symmetric state and the dashed line is for the spin-triplet, spatially antisymmetric state. 
Both show the strong abrupt bistability of the polarization. Even a very small asymmetry in the potential 
induces a strongly saturated polarization. For the spin-triplet case, the response is indistinguishable from 
a step-function. 

The cigcn-cncrgics for the lowest two cigcnslatcs is shown in Figure 3. Energies for both the singlet and 
triplet spin states arc shown. To be of use in a CA-typc design, the energy splitting between the ground-
state and the first excited state (which have opposite polarizations) must be larger than the thermal 
energy kBT. 

The nonlinear bistable saturation [5] evident from this calculation makes it clear that this type of cell is a 
good candidate for CA architectures. Wc have begun modeling arrays and systems of such cells. The CA 
rules for a regular array can be generated from the cell Hamiltonian as follows. For each combination of 
near-neighbor polarizations, find the potential on each site of the central cell. Solve the two-electron 
Schrodingcr equation with that potential and calculate the polarization of the ground state. This process 
produces a table of CA rules sufficient to completely determine CA behavior. Note that because the 
ground-state properties arc always employed, dissipation is assumed in the model [6], 

In conclusion, wc have identified a model nanostructurc which wc believe is an excellent candidate for 
forming the basis of quantum cellular-automata (CA) arrays. It consists of a central quantum dot and four 
neighboring dots occupied by two electrons [7]. The Coulomb repulsion between the two electrons, 
quantum confinement effects, and the discreteness of the electronic charge, combine to produce strongly 
polarized (in the sense defined above) ground states. The response of this polarization to the electrostatic 
environment is highly nonlinear and exhibits the bistable saturation necessary for a two-state CA. 
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FIGURE 3. Energies of the two lowest-energy cell eigenstates. The solid and dot-dashed curves are for the 
singlet spin state. The dashed and dotted curves are for the triplet spin state. 
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