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A B S T R A C T 

The main objective of this study is to generalize recent work on the Legendre polynomial ex­
pansion method of solving Boltzmann's Transport Equation (BTE) in semiconductors [1,2,3,4,5,6]. 
With this generalization, we extend the typical first or second order approaches to solving the 
BTE to include an arbitrary number of Legendre polynomials. The generalization is accomplished 
by using recurrance relations to automatically generate a quasi-infinite system of equations from 
the original BTE. The system is them solved for the quasi-infinite unknown Legendre coefficients 
to obtain the distribution function to arbitrary Legendre order. The Legendre polynomial (LP) 
expansion method for solving the BTE has the advantage that much of the work can be performed 
analytically, thus requiring much less computation type than the Monte Carlo method. In this 
paper, we introduce the methodology of the LP expansion, and discuss the results for applied 
homogeneous static and time dependent fields. 

I. Introduction 
To solve the Boltzmann equation to arbitrary Legendre order, we begin by writing the BTE in 

1 space dimension: 

df 8f „df \df 
Tt + ^dTa

 + qE~drl> = LaF (1) 

where / = f(t,x§,p) is the distribution function, and ay designates the component of a parallel to 
the applied field (where a = x,v,p). (In writing this equation, we have assumed that the applied 
field always points in the same direction, and the variation of the field is in only one dimension.) 
With this equation, it can be shown that the distribution function can be written in terms of the 
following infinite LP expansion: 

oo 

/(M||,P) = £/„(«, *„,p)Pn(x) (2) 
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In the above expression, Pn(x) a r e t n e known basis functions of the LP expansion; and x = cosB, 
where 0 is chosen to represent the direction of the carrier momentum with respect to the applied 
electric field; /„ represent the unknown coefficients of the basis functions, which depend on t,X|j, 
and on the magnitude of the carrier momentum only. The dependence of the distribution function 
on the momentum's direction is given by the LP basis functions. 

The objective is to solve the BTE by determining the coefficients /„ of the LP expansion. 
Once the coefficients are ascertained, they can be substituted into Eqn. (2) to determine the 
distribution function. Since an infinite number of unknown coefficients /„ have been introduced, 
the orthogonality property of Legendre polynomials is utilized to generate an infinite number of 
equations to determine the unknown coefficients. The equation corresponding to the nth coefficient, 
for example, is the following: 



In order to generate this equation explicitly, one has to express the operators in Boltzmann's 
equation in terms of Legendre polynomials. The next section shows how this is done. 

II. Operators in terms of Legendre Polynomial Basis 
Time Operator: To begin with, the time operator, Jj acts only on the coefficients / „ , hence no 

further reduction into the LP basis elements is necessary. The time derivative of the distribution 
function can therefore be expressed directly as 
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Momentum Operator: In contrast to the time operator, expressing the momentum operator is 
more complicated. This is because the effect of the derivative operator j | - on the LP elements will 

interfere with their linear independence. Thus, we must represent the momentum operator such 
that it preserves the integrity of the individual Legendre polynomials. 

It can be shown that the momentum operator takes the following form: 

(5) 

Then, to re-express this operator in terms of the original basis elements, we enlist the help of the 
following well known recurrance relations for Legendre polynomials [7]: 

XPn(x) = «nPn+l(x) + —TT^-Pn- lCx) 
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where we have introduced the notation an = ""*"-• 2n+l ' 
Upon substitution of the above recurrance relations into Eqn. (5), and some re-arrangement of 

terms under the summation, we arrive at the following expression for the momentum operator: 

< - *Z [(I - n~r) «*-•'-•+ (3i&+n-r) -«'-] '•<*> « n = 0 

Velocity-Displacement Operator: Formulation of this operator is straightforward once the fol­
lowing form is recognized: 

dx\\ £o9x\\ 
(8) 

Upon using the recurrence relation in (6), the following expression for the velocity-displacement 
operator can be obtained: 
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Collision Operators: Generally, the collision operator representation in the LP basis is obtained 
by performing the following integration: 

dfn 
. dt J ( 

2n + l I d(cos0) 
.dt. Pn(cos0) (10) 



Here, we have explicitly utilized the orthogonality of the Legendre polynomials to generate 
the terms for the individual coefficients. This integration can be performed either numerically, or 
analytically, depending on the complexity of the collision expression involved. 

I I I . Total Bo l t zmann Equa t ion in L P Basis 
Putting the various operators together, and using the orthogonality of the Legendre polynomials, 

an infinite set of equations is obtained. The interesting result is that all the equations have identical 
form, and can thus be generated automatically. The equation for the n*th coefficient, / „ , i6 given 
by 

dfn 
dt 
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IV . Rela t ionship of L P Coefficients to Hydrodynamic Model 
In addition to providing the complete distribution function, the LP approach can be useful 

for evaluating the the hydrodynamic approach to device modeling. In the hydrodynamic method, 
the focus is not on determining the distribution function, but rather, on determining statistical 
averages which have physical significance. The LP approach can be used to calculate statistical 
averages for comparison with hydrodynamic models. From the orthogonality property of Legendre 
polynomials, it is easily demonstrated that the carrier concentration and average energy depend 
only on /o, where as the drift velocity depends only on f\. Other hydrodynamic quantities are not 
as simple such as electron temperature and heat flow which depend on / 0 and / j , and j \ and / 3 , 
respectively. 

Thus, the moments which are usually sought in hydrodynamic calculations depend only on the 
lowest order coefficients. Hence, it can be said that most quantities of physical interest to hydrody­
namic formulations depend on specific symmetry properties of the momentum distribution function. 
Furthermore, the relative importance of various hydrodynamic quantities can be investigated by 
examining the magnitude of specific Legendre coefficients. 

V . Resul t s 
The BTE was solved using the infinite series method for the homogeneous and time-dependent 

cases. All calculations were for silicon and included the effect of a multivalley, nonparabolic band 
structure, intervalley phonons and acoustic phonons. The transport model used is identical to the 
one employed in standard MC calculations[8]. Fig. 1 shows values for the isotropic part of the 
distribution function calculated using the presented technique are in excellent agreement with MC 
calculations. Fig. 2 shows the distribution function for a homogeneous lOOkV/cm electric field, 
obtained with a 40th order solution to the BTE. It is interesting to note that at low electron energy 
the distribution function is strongly peaked in the direction of the field, but at high energy the 
distribution is essentially isotropic. Fig. 3 shows the /o, /b, / s , /io5 / i s and /20 coefficients of 
the LP expansion. In Fig. 4 time-dependent values for average electron energy and velocity are 
calculated with a 20th order solution to the time-dependent BTE are shown. 

V I . Conclusion 
We have developed a new method for analyzing carrier transport by solving the Boltzmann 

transport equation. With this method, we represent the distribution function in terms of a LP ex­
pansion to arbitrarily high order. An infinite system of equations can be automatically generated 
from the original BTE using LP recurrence relations. The set of equations can easily be solved 
using numerical sparse matrix algebra for the coefficients of the infinite LP expansion. Once the 
coefficients are obtained, the distribution function is calculated. We found that there is excellent 
agreement between the Monte Carlo method and the infinite LP expansion technique, while requir­
ing approximately 1/100 the CPU time to evaluate. Values for the distribution function using as 
many forty Legendre polynomials are readily determined, requiring only 5 minutes on a Sun 3/60 
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workstation to calculate. Finally, it is worth noting that, while we have only shown application of 
the method for the homogeneous, steady-state case, the new method lends itself well to space and 
time-dependent situations. 
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Fig. 1: Comparison of the isotropic distributions/. obtained 
from the Monte Carlo and />„ method for 3 fields. 
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Fig. 2: The total * - space distribution for the 100*£ caee. 
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Fig. 3: Selected P. coefficients determined by Legendre 
Polynomial method to 40th order for the E - lOOg case. 
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