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ABSTRACT 

In this paper, we formulate the Boltzmann equation in terms of scattering matrices and examine 
the uniqueness and convergence of the solution of the reformulated equations. We also study the 
properties of orthogonal transformation of scattering matrices and prescribe a device simulation 
algorithm using Hermite polynomials. 

1. INTRODUCTION: 

In recent years there have been considerable interest in different techniques for directly solv­
ing the space dependent Boltzmann equation. These techniques include the Monte Carlo method 
[1], the hydrodynamic approach [2], the spectral technique [3], the Scattering Matrix Approach 
(SMA)[4] etc. The Scattering matrix approach was originally developed as a physically based ex­
tension of McKelvey's flux method [5]. In this paper, we give a brief derivation of the SMA from 
the Boltzmann equation, formally prove the algorithm for device simulation using the SMA with 
an emphasis on convergence and uniqueness of the solution. Details of this work will appear in 
ref. [6]. We also present an algorithm for device simulation using orthogonal polynomials which is 
expected to reduce the memory requirement of the SMA. 

2. THE BOLTZMANN EQUATION A N D SMA: 

The steady state path integral formulation of the Boltzmann equation is given by: 
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where g(x, k) is the distribution function, Lm is the steady state mean free path between collisions, 
S(k, k', x) is the scattering rate as computed from Golden rule divided by local velocity vx(k). The 
wavevector k\ is given by 
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where the electric field is assumed to be constant. If we define positive flux to be the number of 
electrons crossing a surface at x, per unit time, from the left to the right, we have 

J+(x, kx > 0, kt)AkxA
2kt = g(x, kx, kt)AkxA

2ktvx(k) (3) 

/

oo /-oo rx Ari rx <te" 

d2K dk'x i-35(fci,fc',*>-J-'^CM.*")BI(fc'Mx l,fc'). (4) 
•oo J—oo J —oo Ow 



and negative flux is 
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2kt | vx(k) | (5) 
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Differentiating eq. (4,6) and discretizing both real and momentum space, we obtain following set 
of matrix equations: 

dx J+(x + dx,k) = J+(x,k)(l- r , , . ) + Y S(k,k',x)J+(x,k')dx 
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For each wavevector k characterizing a bin in momentum space, there will be two such equations. 
These equations can be put into a scattering matrix form: 

J+(x,l) 
J+(x,2) 

J+(x + dx,l) ' 
J+(x + dx,2) 

J+(x + dx,n) 
J~(x,l) 
J~(x,2) 

J~(x,n) 

l21 

1 
rii 
r21 

412 
J22 

r22 " 

r21 

r12 
r22 

* 

*12 ' "' 

2̂2 

" 

J+(x,n) 
J~(x + da;, 1) 
J~(x + dx,2) 

J~(x + dx,n) 

The matrix elements may be obtained by comparing the above three equations: 

it: 1 -
dx 

Lm(i) 
tfj = S(ij)dx 

rtj = S(ij)dx. 

In presence of electric field, these matrix elements are modified as: 

tti = ( 1 -
dx eEdx 

i+ 
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eEdx 
%i-i = S(iti-l)dx + 
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r+ = rh = S(ij)dx. 

(9) 

(10) 

(11) 

In eq. (11) $ stands for transmission of a incident mode to the same mode at the output. This term 
equals incident flux less the flux lost to other streams due to scattering within a distance Ax plus 
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contribution due electron drifting from the lower momentum state to the state under consideration. 
Other terms have similar interpretation. 

The above equations proves that Boltzmann equation can be reformulated in terms of scattering 
matrices, thus establishing the basic assumption of the SMA. 

3 . I T E R A T I V E C A S C A D I N G OF S C A T T E R I N G M A T R I X A P P R O A C H : 

The cascading technique used to simulate bulk properties in ref.[4] can be formally established 
by noting that scattering matrices constructed above in Markovian, i.e. the elements are nonneg-
ative and the column sum equals 1. For such a matrix [M], there is unique probability vector 
with eigenvalue 1, and for an arbitrary vector Jo that satisfies the relation Jn+i = [Af]<Au the 
sequence Jo, J i , J-i... converges to eigenvector J^ corresponding to eigenvalue 1. In ref. [4], it was 
assumed that if one injects arbitrary fluxes in different bins of momentum space and repeatedly 
feeds back the scattered fluxes as incident fluxes, the final solution would correspond to the steady 
state eigenvector with eigenvalue 1. Repeated feeding back the outscattered fluxes as input is for­
mally equivalent to repeatedly multiplying a vector by the scattering matrix. The above theorem 
establishes that the procedure is uniquely and absolutely convergent with eigenvalue 1. This proof 
can be extended to device simulation as well, since that cascading rules used for device simulation 
join two Markov matrices to form a Markov matrix. Therefore, the entire device can be considered 
to be one Markov matrix and the above theorem applies to devices. As a consequence, we may 
conclude that regardless the initial guess, the simulation procedure is uniquely and absolutely con­
vergent for devices with arbitrary field profile. 

4. O R T H O G O N A L P O L Y N O M I A L S : 

A large computer memory requirement is one of the basic limitations of the scattering matrix 
approach and limits its application to one spatial dimension at the present time. One of the ways 
to reduce the memory requirement would be to use orthogonal polynomials as basis functions for 
fluxes. If the distribution functions of the chosen set closely resemble the distribution of fluxes 
over momentum space, one can, in principle retain only a few coefficients to accurately describe 
the scattering matrix. 

Since flux functions are defined over semi-infinite momentum space along z direction, we chose 
a set of even order Hermite polynomials as the basis functions. This set can be shown to be both 
orthogonal and complete for all flux functions. 

Let [M] be the scattering matrix computed using rectangular basis. Transforming this matrix 
to the new basis, we have: 

[M'] = [D]-'[M}{B], (12) 

where [B] is the orthogonal matrix. The matrix \M'\ is presumably smaller than the original 
scattering matrix for comparable accuracy; hence the memory requirement is reduced. However, the 
transformed matrix [M'] is no longer Markovian and as such, is not suitable for device simulation. 
One can transform the matrix [M'} into a Markov matrix [M] by following transformation: 

111' 

Ki] = M i 3 (13) 
it)£ 

where to; and Wj are the areas under the curves for the i-th and j-th 2-D Hermite polynomials. 
Once these matrices are obtained , the device simulation rules prescribed in ref. [4] can be applied 
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to cascade matrices and compute internal fluxes. The relation between coefficient of the internal 
fluxes computed this way and that of the internal fluxes computed using [M1] are related to each 
other by following relation: 

* = c'^. (14) 

With these known coefficients of Hermite polynomials, we can obtain the flux functions over mo­
mentum space and compute all relevant physical parameters using the algorithm of ref. [4]. 
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