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Abs t rac t 

Based on the partitioning principle and approximating the nonlinear terms with a linear 
system which is to be solved for the coefficient matrix, a new numerical technique is developed 
for the scaled model where it is assumed that mobilities are constant and Einstein relations are 
valid. We have also introduced new variables a, /? and 7 inside the nonlinear system, which 
help us control the discretization error and assure convergence of the sequence of approximate 
solutions. 

N u m e r i c a l m e t h o d a n d e x p e r i m e n t a l r e s u l t s 

We use the scaled model given in [7], where it is assumed tha t mobilities are constant and Einstein 
relations are valid. It is common to introduce the "quasi-fermi levels" v and w defined through 
n = eu~v and p = ew~u. The simulation problem is given by the following system of partial 
differential equations, now written in terms of the (x,y) coordinate system. 

A 2 (u M + uyy) - eu~v + ew~u + h = 0 

eu~v[vxx + vyy + (ux - vx)vx + (uy - Vy)vy] = 0 

eW~U[Wxx + Wyy + (Wx - UX)WX + (Wy ~ Uy)Wy] = 0 

(1.1) 

The solutions are subject to an appropriate mixed boundary conditions described in [7]. 
A typical domain for a semiconductor is shown in Figure 1, which describes the domain for 

two-dimensional model of an n-channel MOSFET. The electric potentials are applied at the source, 
gate, drain and backgate contacts. 
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Figure 1. Two dimensional domain 
for a typical semiconductor model. 

Figure 2. The simple uniform discretization mesh 
with Zi+i — x, = yj+i - y, = h. 

We transform the system (1.1) into another system with the following exponential substitutions: 

R = e*, S = e _ t , f = e * (1.2) 

and so obtain 
u = a l n i i , v = -f3lnS, w = jlnT. (1.3) 



Equations (1.1) become 

X^R^iR^ + Ryy) - Ra-2(RX2 + R#)) 

- -(RaSp - ^)RQ = - - Rah 
aK Ra> a 

S^iS^+Syy) - S0-2(SX2 + Sy2) + a~(RsSx + RySy) 

+ /3S0-2(Sx2 + Syi) = O (1.4) 

r * - 1 (fxx + fyy) - r'-2(fX2 + fy2) + ~ft*-2(fx2 + fy2) 

- a^-(fxRx - TyRy) = 0 
K 

We discretize the system (1.4) on a uniform mesh by using five point star finite difference 
method. At the point (a;,-, yj) we have the following replacements. 

^ + Ryy !(,„,)= R ^ + ^ - 4 ^ + R ^ + R ^ + e*ihta) ( 1 .5) 

and 

52 , m R2+ij + Ri-ij -2Ri+1jRi-ij + R2
j+1 + Rfj-i -2Rij+1Rij-1 R2 

Hx + Ky ^ 2 + Eij {It, a) (l.b) 

where 

and 

L 2 L 2 

«§' (*>a) = 4i^(u**** + ™ww)% + 4]^2 (• • •) (1 -7) 

>2 J,2 

eg(h, a) = —(uxxxARij + UyyyAR^Rij + ^ (...) (1.8) 

As usual, /?,_,- denotes the approximate value of R(xi,yj). Similar replacements are made for 

Sxx + Syy, S% + S* and Txx + Tyy, T2 + T2. (1.9) 

The second transformation is made to make solutions independent of a,f3 and 7: 

R=Ra = eu, S = S'3 = e~v, f = fy = ew (1.10) 

After some manipulation we obtain a discretized system of equations in the unknowns Rij, Sjj, and TJj, 
described in [7] with discretization errors described below. 

h4 h4 

£R = -^{uxxxx + uyyyy + 4uxxxARij + AuyyyARi^Rij + . — ( . ••) + ••• (1.11) 

h4 - h4 

es = -fijjivxxxx + vyyyy + 4vxxxARij + Avyyy ARij)Rij + —— (• ••) + .•• (1.12) 

h4 h4 

ST = -rr-(wx*Tx + Wyyyy + 4wxxxARij + 4wyyy A % ) % + —— (• ••) + ••• (1.13) 
4:7 4:7^ 

The magnitude of £R,£S and £7* can be made small by choosing large values for a,0 and 7. 
Furthermore, we are solving our linear systems for i?, S and T which are independent of a,0 and 
7. In other words, the one at a,0 and 7 is made to control the discretization error. 



We compute a sequence of iterates R°, R},..., RN, . . . for R and similar sequences for S and 
T. The systems are linearized by evaluating everything in the bracket from one iterate and then 
solving for the next iteration values. The generic term in these iterations is of the form 

+ l y N - l _ ±rpN-l 
• ' y T 

which creates a linear system to be solved for each iteration. 
This solution is then used as the initial guess for a second stage of the numerical algorithm. We 

return to the system (1.4) and apply the method in [6]; this method is a parametrized variant of 
Newton's method. The method of [6] is used in conjunction with a partitioning of the domain. A 
typical example is shown in Figure 3. 
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Figure 3. Subdomains of the semiconductor used for applying the method of [6]. 

In [6] Rice and Sharma have already established that if the sequence of approximate solutions 
generated by using the method in [6] converges, then it converges to a solution of the given problem 
on a fixed mesh. 

The results of an experiment are shown in Figures 4-7. 

Parameter 

Thermal voltage 
Radius doping profile 
Length device 
Depth device 
Width source 
Width drain 

Value 

.0259V 
7 x 1Q-6 cm 
10 - 4 cm 
10~4 cm 
7 x 10"6 cm 
7 x 10 - 6 cm 

Example 

max (fci) = 9.184 

t^ source — •" 

t'drain = •< 5 

l^backgate = « 
||uiV_uiV-l||2 = 

||viV_viV-l||2 = 

| | W ^ - l i ; ^ - l | | 2 = 

X 1017 

10~4 

io-6 

-. io-6 

Table 1: Device Parameters 
Table 2: Applied Boundary Conditions 

We have solved the system (1.1) on a 30 x 30 mesh. We also computed the residual of the potential 
equation and it is noticed that the residual goes to 0 when N gets large. The magnitude of the 
residual after 50 iterations was less than 10 - 7 at almost all the points of the mesh. The number of 
iterations needed for convergence was 50. Figures 4-7 show various quantities for the example. 
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Figure 4 

Natural log graph of the doping function k | 
Figure 5 

The electrostatic potential function « 

Figure 6 

Natural log gi 
I a p h of the electron density functton n = e 

Figure 7 

Natural log graph of the hole density function p = 6 
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