
EFFICIENT MODELING OF TIME-DEPENDENT HOT-ELECTRON-INDUCED 
MOSFET DEGRADATION WITH A HYDRODYNAMIC-BOLTZMANN 

TRANSPORT EQUATION HYBRID METHOD 

Shiuh-Luen Wang and Neil Goldsman 
Electrical Engineering Department 

University of Maryland 
College Park, MD 20742 

Abstract 

An easily implemented method, which combines physical rigor and engineering practicality, for 
predicting hot-electron-induced, time-dependent, device reliability problems is presented. In this 
work we focus mainly on predicting gate-leakage currents and the degradation of current-voltage 
characteristics (I-V) in MOSFET's. The presented method is based on a Hydrodynamic-Boltzmann 
transport equation model, which provides the distribution function over a device. Results agree 
well with both experiment and costly Monte Carlo calculations, while requiring much less the CPU 
time to calculate. 

I. INTRODUCTION 
Accurate modeling of many hot-electron effects in semiconductor devices requires knowledge 

of the energy distribution function. However, models previously proposed, including the popular 
Richardson's equation method, are often based on the incorrect assumption that the distribu
tion function is Maxwellian. Other methods are physically accurate, but often require too much 
CPU time. Recently a new approach which combines the hydrodynamic transport model with 
the homogeneous-field Boltzmann transport equation to extrapolate the distribution function has 
been developed [1]. This method includes physical rigor but obviates the need for a great deal 
of computation time. In this work, we apply this hydrodynamic-Boltzmann transport equation 
model to investigate the hot-clectron-induced degradation in MOSFET's. Once the distribution 
function and average energy has been obtained from this model, we use the information to predict 
MOSFET gate-leakage current, oxide-charge deposition, interface-trap generation, and device I-V 
characteristics as a function of stressing time. Excellent agreement with experiment is attained; 
calculations have also been shown to agree with Monte Carlo simulations, while requiring less than 
1/1000 the CPU time to evaluate. 

II. MODEL DESCRIPTIONS 

II. 1. Hydrodynamic-Boltzmann Transport Equation Model 
The Hydrodynamic-Boltzmann transport equation model for electrons consists of five equations: 

the energy balance equation (1), and the homogeneous-field Boltzmann transport equation (2), as 
well as the Poisson, continuity and momentum balance equations. The first two equations are 
given below. The energy balance equation along with the Poisson, continuity and moment balance 
equations form the well-known hydrodynamic transport model. The homogeneous-field Boltzmann 
equation is obtained by replacing the drift and diffusion terms of the Boltzmann equation with a 
single effective-electric field term. 

v-Vw= -e(v-E)- — V • (nvw) --V • Q ~ ^ ^ (1) 
v ' 3n v n TW(W) 
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where v is the electron drift velocity, w is the electron average energy, E is the actual electric field, 
n is the electron concentration, Q is the heat flow vector, TW is the energy relaxation time, Eef is 
the effective-electric field, f is the electron instantaneous position, k is the electron wave vector, 
f(f, k) is the electron momentum distribution function, and the subscripts ac, iv, ii correspond to 
acoustic phonons, intervalley phonons, and impact ionization respectively. 
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This model has been described in [1]. Briefly, the general approach is first to obtain the 
electric field, carrier concentration, drift velocity, and average electron energy from a solution to the 
hydrodynamic transport equations. From these average values, an effective-electric field profile is 
obtained. The homogeneous-field Boltzmann equation (2) is then solved at each spatial coordinate 
using the corresponding effective-electric field as input to obtain the electron distribution function 
throughout the device. By having to solve only the hydrodynamic transport equations and the 
homogeneous-field Boltzmann equation independently, as opposed to the full Boltzmann equation, 
this model provides a computationally economical scheme for ascertaining nonlocal effects and the 
distribution function. 

In this work, MOSFET degradation is predicted from the results obtained by implementing 
the aforementioned model. To facilitate investigating time-dependent reliability problems, the 
initial values (time t=0) for electrostatic potential and carrier concentrations are provided by a 
2-D Poisson-continuity equation solver. With concentration and potential as input, the energy 
balance equation (1) is solved for average electron energy in two dimensions using a new globally 
convergent method [2]. To evaluate the hydrodynamic-Boltzmann transport equation model, we 
also need to solve the homogeneous-field Boltzmann equation (2) as indicated above. Here this 
equation is solved with the transport model given by [3], while closely following the procedures in 
[4]. We first formulate the equation in terms of the following third order Legendre series, while 
accounting for the effects of acoustic and intervalley phonon scattering, impact ionization, as well 
as silicon's nonparabolic, ellipsoidal band structure. The formulated Boltzmann equation is then 
solved numerically using sparse matrix algebra. 

/ (* ) = Me) + kf1(e)Pi(eoa0) + k2f2(e)P2(cos0) (3) 

where 0 is the angle between Eef and k, Pi(cosO) = cosO, P2(cos0) = ^cos20 — | , and fo(e), kfi(e), 
and k2f2(e) a r e t n e coefficients of the three Legendre polynomials respectively. 

11.2. Gate-Leakage Cur ren t 
We use a Richardson-like equation for thermal emission over the oxide barrier [5]. Unlike 

Richardson's equation which is based on a Maxwellian, the new expression is derived from the 
physics-based hot-electron distribution function, which is found from the model described above. 

Un = ^ ^ ( ^ ^ ) , / 2 [ - 4 7 5 + -175] r meh(e)de (4) 
•>« mt' mt • / *B 

where mt and m/ are silicon's transverse and longitudinal effective masses respectively, 7(e) is 
silicon's nonparabolic dispersion relation [3], $ B is the oxide barrier height. f(f,e) is the energy 
distribution function. The effects of Schottky barrier lowering and electron tunneling are accounted 
for by adjusting the oxide barrier height [6]. 

It is worth noting that the oxide field near the drain junction is reversed in direction and tends 
to repel the emitted electrons back to substrate when the device is operated in saturation region. 
To account for this effect, a critical-injection angle between the oxide field and the Si/Si02 interface 
is introduced, below which injected electrons do not contribute to the gate current [7]. 

11.3. Oxide-Charge and Interface-State Bui ldup and Device Degradat ion in T ime 
We predict time-dependent oxide-charge and interface-state buildup by using the following 

equations. Equation (5) describes the exponential relationship between the occupation of oxide 
states, the gate-current density, and the device stressing time [6]. The increase in the interface-
state density is given in Eqn. (6) which was proposed in [8]. 

#a.(r,0 = 5!>o e (5) 

a,tJg(r)t 

1 + 
ADit(rM)=Dttaat~^mi (6) 

e 



where JVori- is the density of type i oxide traps, Nox(r,t) is the number of oxide states filled at 
time t, cr,- is the cross section of oxide trap i, Du,at is the saturation value of the interface-state 
density ( e V ^ c m - 2 ) , AjD,t(f, t) is the increased interface-state density, and ait is the interface-state 
generation cross-section. 

After device operation, some charge becomes trapped in the oxide and interface-states are 
generated. This often causes a localized perturbation on the potential and carrier distributions 
near the drain region of the device. This effect can be easily understood by examining the Poisson 
equation at time t\\ 
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eNox{r,ti) 
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Si 
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(7) 

where <£(r, «i) is the new potential because of the perturbation caused by the trapped oxide charges 
and generated interface states, n' and p' are the new electron and hole concentrations, N is the 
net fixed charge density, Q,n l(f , t i ) is the generated interface traps which can be calculated from 
AA t(r-,*i). 

Here the new potential is determined in two dimensions using the time perturbation method 
[8]. With this method, the new potential can be decomposed into a time independent part and a 
time dependent part, i.e. at time t\, 

#(f , t 1) = ^(f) + «(f, t1) (8) 

where u(f,<i) is the perturbation potential at time tly and i>(r) is the original potential. 
We start with a potential distribution and electron concentrations obtained from a DD simula

tor. Then, the perturbation potential is obtained by substituting relation (8) into (7) and solving 
the resulting equations. After the perturbation potential is determined, local corrections are made 
to the carrier concentrations. In time, as more charge becomes trapped in the oxide and more inter
face states are generated, we periodically use the perturbation method to re-evaluate the Poisson 
and continuity equations. At each iteration, the new gate current and I-V characteristics are calcu
lated using the updated potential distributions and charge concentrations. The overall calculation 
scheme is shown in Fig. 1. 

Fig. 1 Hot-electron-induced time-dependent MOS-
FET degradation prediction scheme based on the 
hybrid hydrodynamic-Boltzmann transport equa
tion model. 
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I I I . RESULTS 
To demonstrate the capabilities of the presented method, we simulated NMOSFET's with chan

nel length 1.2 fim and 0.6 fitn respectively. Excellent agreement of the electron energy distribution 
functions calculated by our model and the results obtained from Monte Carlo simulations was 
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attained as shown in Fig. 2. Figure 3 shows the calculated gate currents agree very well with 
experiment for the 1.2 fim device. Reasonable values for temporal evolution of gate current and 
drain current for the 0.6 fim device have also been obtained as shown in Figs. 4 and 5. 
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Fig. 2 Comparison of the distribution functions 
obtained while using the presented model ver
sus Monte Carlo calculations at channel coordi
nates IMfim (A) and lMfim (B). The device 
has a gate length of 1.2 fim and is biased at 
Vd = 6.0F and Va = 7.0F. The solid lines were 
calculated by the presented method. The open 
circles were calculated by Monte Carlo simula
tions. The insert shows the lateral electric field 
along the channel (around the drain junction). 
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Fig. 3 Gate current versus gate voltage. The 
points were calculated by the presented method; 
the solid lines are experimental values. L/W = 
1.2/.m/50.8/.m, Tox = 150A. 

_> i i i I • i • i I i i i i I i i i i I 

I-. 
-1.5 

_2 I I I I 

»og(t) (Second) 

500 1000 
Streciing Time (Second) 

Fig. 5 Calculated drain current degradation as 
a function of stressing time. Stress condition is 
Vd = 2Vg = W. Measurement condition is Vd = 
0.1F and Vg = 2.5V. The solid line was calcu
lated by the presented method; the open circles 
are experimental values. L/W = OSfim/bOftm, 
To* = 153A. 

Fig. 4 Measured and calculated gate current ver
sus stressing time. Stress condition is Vd = Vg = 
4.75V. The open circles were calculated by the 
presented method; the solid line is from experi
mental data. L/W = OSftm/bOfim, Tox = 153A. 
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