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ABSTRACT 

Using 3D device solver STRIDE, large-scale 3D simulations of semiconductor 

devices have been successfully demonstrated on the massively-parallel computers. 

Domain decomposition based concurrent computation allows high parallel efficiency 

for both matrix assembly and matrix solution. Nonlinear scheme adaption and 

trusted-region damping scheme allows robust convergence performance for the highly 

nonlinear semiconductor equations. Examples presented illustrates some of the poten­

tial practical applications afforded through large-scale 3D simulation capability. 
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The high performance computing power provided by the massively parallel supercomputers holds 

great promise of removing important barriers, such as long CPU hours, insufficient grid resolution, for 

the wide spread use of 3D device simulators in the development of VLSI technologies. A prototype 3D 

device solver, STRIDE (Stanford ThRee dimensional DEvice simulator)!!] has been successfully ported 

onto the delta machine, a massively parallel supercomputer with 512 i860 CPU nodes and more than 

6G bytes of total memory. Running on all 512 CPU nodes, STRIDE sustained 1.7 GFlops in sparse 

matrix solution corresponding to about 65 percent in parallel efficiency. The CPU time per bias point 

when calculating the I-V curves of a bipolar transistor consisting of about 5 million grid points, i.e. 15 

million variables, is about 30 minutes. 

STRIDE solves drift-diffusion model on multiple platforms including multi-processor parallel 

computers[2]. It applies the finite volume discretization scheme to the non-uniform regular grids 

representing the device domains. Non-planar structures are supported by allowing certain patterns of 

different materials inside the brick elements. Polycrystalline material is supported by allowing different 

mobility and lifetime models. 

The domain decomposition principle underlines the schemes for concurrent computation[3]. The 

entire simulation domain is divided into roughly equal size subdomains and assigned to the processors. 

The concurrent matrix assembly requires virtually no communication, except a global sum for calculat­

ing the infinite norm of the residual vector as each CPU node deal with its own subdomain. To facili­

tate the concurrent vector and matrix operations, the ordering of the grid points 'seen' by a processor is 

based on a classification according to how they are shared and with what neighboring processors(s). 

The operation needed by the iterative matrix algorithms, namely matrix vector multiplication and vector 

dot product, can therefore be easily constructed. A good preconditioner is the key to success of the 

iterative algorithms and a challenging issue of parallel computation has been the efficient concurrent 

implementation of the advanced preconditioneis. By dividing the preconditioning process into stages 

involving grid points with increasing number of shared neighboring processors, concurrent precondition-

ers such as ILU(0), ILU(l) and ILUV In our experience, while ILU(0) has been adequate for the most 

problems encountered, ILUV has proven to be very effective in solving otherwise non-convergent prob­

lems. In short, based on domain decomposition, high parallel efficiencies are achieved in both the for­

mation and the solution of the matrices. 
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Robust nonlinear convergence performance is still a challenge for solving the highly nonlinear 

semiconductor equations. Three approaches are used in STRIDE to attack this issue[l ,2], First, an ini­

tial guess scheme is used to spread the voltage steps at the electrodes into the interior of the device, 

thus avoiding big voltage steps in charge neutral region. Second, a nonlinear algorithm adaptation 

scheme has been developed to dynamically choose the 'optimal' nonlinear algorithm for the situation. 

With its widest convergence radius and smallest CPU time per iteration, Gummel iteration is always 

chosen to start the nonlinear iteration. If the convergence rate is unsatisfactory, a switch into more fra­

gile but faster converging algorithms such as Newton-1C will be made when the solution has settled 

down sufficiently. The mechanism for switching back into more stable algorithms is provided to deal 

with the sudden change in the internal dynamics of the device such as the onset of latch-up process. 

Third, a trusted region approach based algorithm is used to damp the update vector if necessary. The 

combined impact of these approaches can be seen from the result of a full delta run of a bipolar transis­

tor with an initial bias of 0.9 volt on the base and 5 volts on the collector. For this very difficult non­

linear problem, The solution process converged in thirteen iterations with the last eight being that of 

Newton-1C. 

Figure 1 shows the number of grid points and CPU time per bias point as a function of CPU 

nodes in the simulation of a non-walled bipolar transistor. The number of grid points used scales 

linearly with the number CPU nodes as more processors also bring in proportionally more memory. It 

is well known that the number of linear iterations grows with the one-third power of the number of 

solution variables in 3D simulation. The fact that CPU time per bias point also grows with the one-

third power rule indicates that the parallel algorithms have nearly perfect scalability as the number of 

processors increase. With the mega-scale simulation capability, various previously impossible issues 

can now be addressed adequately. For example, by increasing the grid density of the bipolar transistor, 

it was found that the collector current simulated at a lower grid density was quite adequate while the 

base current did not approach the asymptotic values until about one million grid points. 

Latch-up analysis is an area where 3-D simulation is essential to obtain realistic results. Figure 2 

shows the layout of a CMOS cell with the susceptible area for latchup when the well contacts (not 

shown) is taken into account. Using STRIDE, the latchup trigger current was analyzed in this area with 

the well contacts included. By butting the n-well contact with VDD, trigger current is increased by more 

than a hundred percent. With the mega-scale simulation capability afforded by high performance com­

puting, it is now feasible to analyze the latchup with the actual circuit layout and provide more relevant 

information to the circuit designers. 

In summary, high performance computing capability provided by the massively parallel computer 

is making the mega-scale 3D device simulations feasible. Results obtained from delta runs of STRIDE 

demonstrates parallel algorithms based on domain decomposition is very promising in delivering scal­

able performances on the massively parallel computers. 
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Figure 1 3D Bipolar Simulation on DELTA 
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Figure 2 Latchup Problem Area in A CMOS Cell 




